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Abstract

In fitting dose-response models to entomological data it is often necessary to take account of

natural mortality and/or overdispersion. The standard approach to handle natural mortality is to

use Abbott’s formula (Abbott, 1925), which allows for a constant underlying mortality rate. Standard

overdispersion models include beta-binomial models, logistic-normal, and discrete mixtures. We extend

the standard model (Morgan, 1992), and include a random effect in the dose levels, using the approach

described in Aitkin et al. (2009). We consider the application of this model to data from an experiment

on the use of a virus (PhopGV) for the biological control of worm larvae (Phthorimaea operculella)

in potatoes, using a procedure implemented in software R. Using the model with random effects in the

dose levels, we obtained a better fit than that provided by the standard model.

Introduction

Models for binary and binomial response grew out of the needs of a type of experimental inves-

tigation known as bioassay. In a typical bioassay, different concentrations of a chemical compound are

applied to batches of experimental subjects and the number of subjects in each batch that respond

to the chemical is then recorded. These values are regarded as observations on a binomial response

variable. Some experiments in entomology exhibit evidence that responses can occur even at zero

dose; here the response of interest is death and this phenomenon is referred to as natural mortality.

Among the available methodologies for the analysis of data that present natural mortality, little

has been developed to deal with the occurrence of both natural mortality and overdispersion. To

model situations like this, one approach is to use quasi-likelihood models, for example, as used by

Raymond et al. (2006) and Mascarin et al. (2010).

In a bioassay, overdispersion can occur by variation in the response probabilities for groups of

insects that received the same dose level. This variation could be attributed to relevant explanatory

variables that have not been recorded, or to the inclusion in the model of certain variables that have not

been adequately measured or controlled. According to Collet (2002), this situation can be modelled by

the inclusion of a random effect in the linear predictor and so mixed models can be used in modelling

overdispersion.

The application here is to an experiment in which potatoes (Solanum tuberosum L.) were each

infected with mij = 30 larvae of Phthorimaea operculella, and then, D different concentrations of a

virus (PhopGV ) were applied to samples of ni potatoes (observations are indexed by i = 1, . . . , D

and j = 1, . . . , ni). There was also a control sample (no virus, i = 0) with n0 = 9 potatoes. The

experiment was conducted at 18oC, and after 60 days the numbers of dead larvae yij were counted.
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Methodology

In modelling the observed proportions yij/mij , the yij can be assumed to have a B(mij , π
∗
ij)

distribution, where π∗
ij the probability of response depends on the natural mortality and the dose-

response relationship. A model for π∗
ij (Morgan,1992) is

π∗
ij = ωij + (1− ωij)πij , j = 1, ..., ni and i = 0, ..., D,

where πij is given by the tolerance distribution (normal, logistic or extreme value), and ωij is the

natural response probability. In general, we can model πij and ωij as function of covariates and

parameters giving the following two models:

Model (a) - Standard model

log

(
ωij

1− ωij

)
= γ′uij and log

(
πij

1− πij

)
= β′xij ,

Model (b) - Random effect in the linear predictor of the dose levels

log

(
ωij

1− ωij

)
= γ′uij and log

(
πij

1− πij

)
= β′xij + σZi,

where Zi is a random effect with standard normal distribution.

If it were possible to label the subjects who responded due to the applied dose as yijd and those

who responded naturally as yijc, then the total number of dead at dose dij would be

yij = yijc + yijd.

In the control group, if the number of larvae that died is y0j out of m0j , since they did not receive the

virus we have y0j = y0jc.

The likelihood for Models (a) and (b) is given by

L(ωij , πij ; yij) ∝
D∏
i=1

ni∏
j=1

[(1− ωij)(1− πij)]
mij−yij [(1− ωij)πij ]

yijdω
yijc
ij

×
n0∏
j=1

ω
y0j
ij (1− ωij)

m0j−yoj .(1)

The log likelihood of (1) for Model (a) as function of β and γ is given by

l(γ,β;y) ∝
D∑
i=1

ni∑
j=1

(mij − yij)

[
log

(
1

1 + eβ
′xij

)]
+ yijd log

 eβ
′xij

1 + eβ
′xij


+ (mij − yij) log

 eγ
′uij

1 + eγ
′uij

+ yijd log

(
1

1 + eγ
′uij

)
+ yijc log

 eγ
′uij

1 + eγ
′uij


+

n0∑
j=1

y0j log

 eγ
′uij

1 + eγ
′uij

+ (m0j − y0j) log

(
1

1 + eγ
′uij

)
= l(β;y) + l(γ;y).(2)

This log-likelihood is easy to maximize, because l(β;y) + l(γ;y) can be maximized separately. The

approach used to estimate the parameters was the EM algorithm (Dempster et al., 1977), as also used
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in bioassays with natural mortality by Hasselblad (1980) and Barlow and Feigl (1985). With the EM

algorithm, the complete log-likelihood (2) is maximized iteratively by alternating between estimating

yijc by its expectation under the current estimates of β and γ (E step) and then, with the yijc’s fixed

at their expected values from the E step, maximizing l(γ,β;y) (M-step). The (k + 1)th iteration of

the EM algorithm for Model (a) requires three steps:

E− Step : Estimate E(yijc|yij) under the current estimates β(k) and γ(k)

y
(k)
ijc = E(yijc|yij ,β(k),γ(k)) =


eγ

′uijyij

eγ
′uij + eβ

′
xij

1+eβ
′
xij

for i = 1, ..., D;

M− Step for β: Find β(k+1) by maximizing l(β; y
(k)
ijc |yij): β

(k+1) can be found from a binomial

logistic regression of the responses y
(k)
ijd = yij − y

(k)
ijc with binomial denominator mij − y

(k)
ijc and design

matrix X;

M− Step for γ: Find γ(k+1) by maximizing l(γ; y
(k)
ijc |yij): using a binomial logistic regression of the

responses y0j and y
(k)
ijc with binomial denominators m0j and mij respectively on design matrix U.

These three steps must be repeated until the convergence is reached.

For Model (b), letting ψ = (γ,β,σ) be the combined parameter vector, the likelihood is given by

L(ψ;y) =
D∏
i=0


∫ +∞

−∞

 ni∏
j=1

P (yij |ψ)

ϕ(zi)dzi
 .(3)

The integral in the likelihood (3) does not have a closed form except for normal Y . For other response

models it is approximated by Gaussian quadrature: the integral over the normal Zi is replaced by

the finite sum over K Gaussian quadrature mass points zk with masses αk (Aitkin et al. 2009). The

likelihood is then

L(ψ;y) =
D∏
i=0


K∑
k=1

 ni∏
j=1

P (yij |ψ)

αk

 ,

where P (yij |ψ) =
(mij
yij

)
(π∗

ij)
yij (1− π∗

ij)
mij−yij .

The likelihood is thus (approximately) the likelihood of a finite mixture of exponential families density

with known mixture proportions αk at know mass-points zk, thus zk becomes another observable

variable in the regression, with regression coefficient σ.

The log-likelihood is l(ψ;y) =
D∑
i=0

log

(
K∑
k=1

αkρik

)
, with ρik =

∏ni
j=1 P (yij |ψ).

Then

∂l

∂β
=

D∑
i=0

∑K
k=1 αkρik

∂ log ρik
∂β∑K

k=1 αkρik
=

D∑
i=0

ni∑
j=1

K∑
k=1

wiksijk(β),

where wik is the posterior probability that observation yij comes from component k,

wik =
αkρik∑K
l=1 αkρil

and sijk(β) is the β-component of the score function for observation (ij) in component k,

sijk(β) =
(yij − µijk)xij(

miµ−µ2

mi

)
g′ijk

.
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Following Anderson and Hinde (1988), the estimate of σ can be found by regarding Zi as an additional

covariate and σ as an extra parameter in the linear predictor. Estimation proceeds by fitting a weighted

generalized linear model using wik as additional weights. These weights are functions of Zi, Yi, σ and

β and must themselves be estimated iteratively.

The steps of the EM algorithm for model (b) are the following:

E− Step : Estimate E(yijc| yij) under the current estimates β(k), σ(k) and γ(k),

y
(k)
ijc = E(yijc| yij ,β(k),γ(k), σ(k)) =


euijyij

euij + eβ
′
xij+σzi

1+eβ
′
xij+σzi

for i = 1, ..., D.

M− Step for β and σ: Find β(k+1) and σ(k+1) by maximizing l(β, σ; yijc|yij), β(k+1) and σ(k+1)

can be found from a weighted binomial regression of the responses y
(k)
ijd = yij − y

(k)
ijc with binomial

denominator mij − y
(k)
ijc with weights wik for a design matrix X augmented by a vector z of the k

Gaussian quadrature points.

M− Step for γ: Find γ(k+1) by maximizing l(γ; yijc|yij): using a binomial logistic regression of the

responses y0j and y
(k)
ijc with binomial denominators m0j and mij respectively on design matrix U.

In model (b) 20 quadrature points were used and the procedures were implemented in the R package.

Main Results and Conclusions

We included random effects in the standard model for natural mortality in the dose levels, with the

aim to provide a better fit when the dataset exhibits overdispersion.

For the comparison between models, we also fitted a standard binomial model (Model (c)), with link

functions logit and complementary log-log, without taking into account the natural mortality. Table

2 presents the fit statistics (−2 log likelihood, AIC and BIC) for models (a), (b) and (c).

Table 1: Fit Statistics: −2 log likelihood, AIC and BIC for models (a), (b) and (c)

Fit Statistics Model (a) Model (b) Model (c)

link function link function link function

logit complementary logit complementary logit complementary

log-log log-log log-log

−2 log likelihood 394.30 385.10 355.20 378.60 426.70 370.50

AIC 400.30 391.10 363.20 386.60 430.70 374.50

BIC 399.47 390.27 362.09 385.49 430.15 373.95

For these three statistics, the smaller the value the better is the fit. In Figure 1 we plot models (a),

(b) and (c) with the link function logit, and in Figure 2 we plot models (a), (b) and (c) with the link

function complementary log-log.

The fitted values for the models (b) were obtained by the empirical Bayes predictions (Aitkin, 1996).

The effective dose ED100p% values, are doses which correspond under the model to 100p% mortality.

A commonly used summary of a fitted model is the ED50, the dose corresponding to 50% mortality,

that has a useful interpretation as the median of the tolerance distribution. In Table 2 are the values

of the ED50 in log scale for the fitted models. For models (b), the approach used to calculate de ED50

is described in Gutreuter and Boogaard (2007).
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Figure 1: Proportion of mortality, fitted curve and predicted values for Models (a), (b) and (c) with

logit link
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Figure 2: Proportion of mortality, fitted curve and predicted values for Models (a), (b) and (c) with

complementary log-log link

Table 2: ED50 for models (a), (b) and (c)

Model (a) Model (b) Model (c)

link function link function link function

logit complementary logit complementary logit complementary

log-log log-log log-log

ED50 4.73 4.80 4.57 4.86 1.97 2.50

With the inclusion of the random effect in the dose levels, the effective dose for the logistic model is

4.57 and for the complementary log-log model is 4.86. The ED50 when the natural mortality is not

taken into account is underestimated, and when natural mortality is taken into account, but without

random effect, the ED50 is overestimated, compared to the logistic model with random effect that

provides the best fit. We concluded that data from biological assays that present natural mortality
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and overdispersion can be more realistically modelled when a random effect is included to account for

variability among the potatoes that received the same dose levels. For this dataset, the model with

random effect in the linear predictor in the dose levels and logit link provides a better fit, and this

model has response probability equation given by

π̂ij = 0.32 + (0.68)
exp[−7.61 + 1.66 log10(dij) + 0.74zi]

1 + exp[−7.61 + 1.66 log10(dij) + 0.74zi]
.
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