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Introduction and Preliminaries

For the sake of completeness and ease of reference, we state some basic concepts and definitions.

Definition. An array with m rows (constraints), N columns (runs, treatment-combinations), and with

s symbols (say, 0, 1, . . . , s − 1; also called levels) is merely a matrix T of size m × N with elements

from the s symbol set.

Definition. An array T of size (m×N) and with two symbols (0 and 1) is called a balanced array of

strength t (t ≤ m) if in every t-rowed submatrix T ∗ of T (clearly, there are
(m
t

)

such submatrices),

every (t× 1) vector α of weight i (0 ≤ i ≤ t; the weight of a vector is the number of nonzero elements)

and its permutation P (α) appears with the same frequency, (say) µi. The vector µ′ = (µ0, µ1, . . . , µt)

is called the index set of T , and clearly, N =
∑t

i=0

(t
i

)

µi.

It is quite obvious that orthogonal arrays (O-arrays) form a subset of B-arrays under the con-

dition that µi = µ (for each i). The incidence matrix of a balanced incomplete block (BIB) design

is also a B-array with t = 2. The relationship of balanced arrays of strength two with rectangular

designs, group divisible designs and nested balanced incomplete block designs has been described in

[20]. Orthogonal arrays with two symbols have been used to construct fractional factorial designs

for 2m series, but the main problem in using O-arrays is that these arrays do not exist for each N

(the number of treatment-combinations). For example, for t = 4, the number of columns N in the

O-array must be a multiple of 24 (ie. 16). Thus, O-arrays with t = 4 can only exist if N = 16µ (µ

is a positive integer ≥ 1). To overcome this drawback, the concept of B-arrays was introduced (at

the suggestion of C.R. Rao) by Chakravarti [3]. Relaxing the combinatorial constraint on O-arrays

gave rise to B-arrays. B-arrays with two levels and with different values of the strength t have been

extensively used to construct fractional factorial designs of 2m series having different resolutions. For

example, B-arrays with t = 4, s = 2 have been extensively used to construct optimal balanced frac-

tional factorial designs of resolution V (ie. designs which allow us to estimate all the effects up to and

including two-factor interactions under the assumption that higher order interactions are negligible).

To gain further insight into the importance of B-arrays to design of experiments and their relationship

to other combinatorial structures, the interested reader may consult the list of references (by no means

an extensive one) at the end of this paper, and also further references listed therein.

To construct B-arrays (O-arrays) of strength t (t > m) for a given µ′(µ) and m is a very

nontrivial and complex problem. This problem becomes all the more challenging if our interest is to

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS036) p.4739



construct such arrays with the maximum possible value of m for a given µ′ (ie. N is known). The

resolution of this problem will amount to accommodating more factors (for a given N) in the language

of design theory, which means savings in cost of running the experiment. Such problems for B-arrays

and O-arrays have been investigated, among others, by Bose/Bush, Rao [2, 16], Seiden/Zemach [19],

and by Chopra/Low and Dios, Rafter/Seiden, and Saha et. al. in [8, 9, 10, 11, 12, 18], etc.

In this paper, we confine ourselves to B-arrays with t = 5. Balanced fractional factorial designs

obtained by using B-arrays with t = 5, under certain conditions, would give rise to resolution six

designs (ie. designs which allow us to estimate all the effects up to and including two-factor interactions

in the presence of three-factor interactions when higher-order interactions are negligible).

Main Results on B-arrays with t = 5 with Applications

The following results are either quite obvious or can be easily established.

Lemma 2.1. A B-array with m = t always exists.

Lemma 2.2. A B-array T of strength t with µ′ = (µ0, µ1, . . . , µt) is also of strength t′, where 0 < t′ ≤ t.

Note that when T is considered as an array of strength t′ (0 < t′ ≤ t), the jth element (0 ≤ j ≤ t) of

its parameter-vector is given by Aj,t′ =
∑t−t′

i=0

(

t−t′

i

)

µi+j , with the convention that
(

a
b

)

= 1 if a = b = 0.

It is quite obvious that Aj,t′ is merely a linear combination of the elements µj, µj+1, . . . , µj+(t−t′), for

0 ≤ j ≤ t′.

Lemma 2.3. Let xj (0 ≤ j ≤ m) denote the frequency of the columns of weight j in a B-array T

(m×N) of strength t = 5 with µ′ = (µ0, µ1, . . . , µ5). For T to exist, the following conditions must be

satisfied:

Lk =
m
∑

j=0

jkxj = N, if k = 0;

=

k
∑

r=1

armrAr,r, for 1 ≤ k ≤ 5,

(0.1)

where mr = m(m− 1) · · · (m− r + 1), values of ar are known, and Ar,r are also known if µ′ is given.

Clearly, (0.1) expresses the Lks as polynomials in m. We provide next, for ease of computations, the

values of ar for various values of k. The elements of the vector (a1, a2, . . . , ak) for 1 ≤ k ≤ 5, are

respectively: (1), (1, 1), (1, 3, 1), (1, 7, 6, 1), and (1, 15, 25, 10, 1).

Theorem 2.1. Let xj (0 ≤ j ≤ m) be the number of columns of weight j in a B-array T (m ×N) of

strength five and with index set µ′ = (µ0, µ1, . . . , µ5). In order for T to exist, the following inequalities

must be satisfied:

L1L3 ≥ L2
2.(a)

L1L3L5 + 2L2L3L4 ≥ L1L
2
4 + L2

2L5 + L3
3.(b)

Proof. Consider the following matrix of moments
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W5 =







L1 L2 L3

L2 L3 L4

L3 L4 L5






.

It is a symmetric matrix and is non-negative definite (n.n.d.), which can be seen by observing the

non-negative definiteness of the quadratic form
∑m

j=0(α1j
1/2+α2j

3/2+α3j
5/2)2xj in variables α1, α2,

and α3. Since W5 is n.n.d., all its leading principal minors have determinant greater than or equal to

zero. The leading principal minors are

(

L1 L2

L2 L3

)

and W5. We obtain the two inequalities, respectively, by setting the determinants of these minors ≥ 0.

�

Next, we give some illustrative examples. In order to accomplish this, we prepared a computer

program to test the inequalities in Theorem 2.1 for values of µ′ and m ≥ 6. For a given µ′ and m, if

any inequality is contradicted, then the B-array for that µ′ and m does not exist. Clearly, this would

also allow us to obtain the max(m) for a given µ′. We compare both inequalities and also these against

the ones published earlier in [9, 11].

Example 1. For µ′ = (2, 3, 3, 3, 3, 2), inequality (2.1a) gives m ≤ 48 while (2.1b) gives m ≤ 10. Thus in

this case, inequality (2.1b) is better. For µ′ = (1, 1, 3, 1, 1, 2), we obtain m ≤ 6 using (2.1b), but (2.1a)

did not get contradicted even for m ≥ 100. For µ′ = (2, 0, 0, 0, 1, 2), we find (2.1b) is not contradicted

even for m ≥ 100 but (2.1a) gives m ≤ 7. Hence, no one result is superior in each case. Now, we

compare the present results with those published in [9, 11].

Example 2. The max(m), as published in [9], for the arrays (1, 4, 1, 1, 1, 1), (1, 1, 1, 7, 4, 3), and

(2, 5, 7, 1, 1, 1) are found to be 6, 8, and 7, respectively; where as the max(m) for the above ar-

rays (using 2.1b) are found to be 5, 7, and 7, respectively. For the array with µ′ = (1, 1, 1, 1, 2, 1), the

max(m) is 7, as published in [11], but (2.1b) gives us m ≤ 6.

In conclusion, we see that none of these conditions is uniformly better for every B-array. However,

we observed some results may fare better in comparison to others. For example, (2.1b) gave us sharper

bounds on m as compared to (2.1a) in the majority of the B-arrays selected by us. These inequalities

are very useful in the sense that they remove from consideration, all µ′ and m for which any one is

contradicted.
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RÉSUMÉ (ABSTRACT)

In this paper, we define balanced arrays (B-arrays) discuss their relationships with other com-

binatorial structures in design of experiments, and describe their use in the construction of fractional

factorial designs. In particular, we obtain some necessary existence conditions for B-arrays with s = 2

symbols and of strength t = 5. As a consequence, we obtain, for a given µ′ = (µ0, µ1, . . . , µ5), the

maximum value of the number of constraints m.
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