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1. Introduction 
Clustered survival data with a cure fraction arise naturally from biomedicine, econometrics and 

sociology studies. For example, the one-stage non-submerged dental implant study conducted by Chi-Mei 

Medical Center in Taiwan (Wen et al., 2008) is to identify the risk factors associated with dental implant 

failure based on a 7-year follow-up data set composed of 324 patients (742 Implants). Here, a patient is 

referred to as a cluster and cluster sizes vary from 1 to 11. Implant failure was defined as if there were 

functional signs of pain or discomfort, inflammation or infection during the clinical examination, implant 

mobility, radiolucency or radiographically detectable bone loss recurrent. Since Wen et al. (2008) applied the 

life-table method to estimate the failure rate, the failure times are only available in yearly intervals. Therefore, 

the time until failure can be considered as grouped or discrete survival time. Moreover, cure is possible for 

dental implant. Therefore, it is desirable to use the mixture cure rate models to identify the risk factors 

associated with dental implant failure based on discrete survival time data.  

The mixture cure rate models have been well developed for univariate and multivariate (or clustered) 

continuous right-censored data. In the literature, two approaches have been proposed for multivariate or 

clustered continuous right-censored data. One is referred to as marginal regression approach and this 

approach is useful if a covariate’s population average effect is of primary interest and the correlation 

structure is not of interest. For example, Peng et al. (2007) extended univariate mixture cure rate models for 

multivariate continuous survival data by modeling the marginal distribution as a proportional hazards model 

with logistic regression for cure fraction. Another is long-term survivor mixture model with frailty or random 

effect to take into account for the correlation structure within each cluster. For example, Chatterjee and Shih 

(2001) and Wienke et al. (2003) considered the shared frailty model and correlated frailty model, respectively, 
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for bivariate continuous survival data.  

Recently, Zhao and Zhao (2008) proposed discrete-time survival models with long-term survivors for 

univariate grouped or discrete-time survival data. Chi, Chen and Su (2010) proposed using a marginal 

regression approach to estimate the regression parameter in discrete-time survival models for clustered 

discrete survival data. When the joint survival distribution is obtained from a frailty model, the random effect 

frailty model is more appropriate to capture the association between the correlated survival times. Therefore, 

frailty is introduced in this paper to characterize the correlation between discrete survival times within 

clusters. In particular, the positive association between survival times is incorporated by imposing a common 

gamma frailty effect for clustered discrete survival data. The accuracy of the estimators of the parameters in 

the mixture cure gamma frailty model is examined by simulation. In addition, the implementation of the 

mixture cure gamma frailty model to a dental implant study is presented. 

2. Mixture cure frailty model 
Let  and  be the survival time and censoring time for the kth individual in the jth cluster, 

 and . The observed survival time is denoted by with a 

right-censored indicator 
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For j = 1, to account for heterogeneity, Price and Manatunga (2001) considered the use of frailty mixture 

models , which is proposed by Longini and Halloran (1996), where 

 is the cumulative baseline hazard function and w is the frailty. They used different frailty 

distributions to model the leukemia remission data. Chatterjee and Shih (2001) extended the univariate 

mixture cure rate models to bivariate continuous survival times, which follow a shared gamma frailty model. 

Based on this model, they constructed a full likelihood function for bivariate continuous survival times to 

obtain parameter estimate. Since the shared gamma frailty model only explains correlations within clusters, 

Wienke et al. (2003) used correlated frailty model to account for both correlations within cluster and 

population heterogeneity. For bivariate continuous survival times, the maximum likelihood estimators can be 

obtained from the full likelihood function. Their procedures are fully parametric approach and do not 

consider covariates.  
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To account for the correlation, the mixture cure frailty model for the kth individual in the jth cluster, 

based on the given covariates  and a frailty  is proposed in this paper, as  jkZ ju

ju
jkjjk ZtSppuZtS )]|([1),|( *+−= . 

Note that  the individuals within the same cluster share the same frailty. If  follows a 

proportional hazards model, the conditional improper survival function given frailty  can be expressed 
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as 
)](ln)exp(exp[1),|( *

0 tSZuppuZtS jkjjjk β+−= , (2.1) 

where β is a q by 1 vector of unknown regression parameters and  is an unknown baseline survival 

function. Thus a semiparametric frailty model is considered here. Note that, for discrete survival times, the 

baseline survival function can be expressed as a product of hazard rates, that is , where 

 is the baseline hazard rate evaluated at time . 
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To estimate the unknown parameters p, β, and , the conditional likelihood function for discrete 

survival times can be constructed as follows. For the kth individual in the jth cluster, if 

*
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contribution to the conditional likelihood function given the frailty  is ju
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Whereas, if jkδ = 0, then the contribution is 
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Thus, the likelihood function conditional on the frailty  is ju
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where  is the vector of all parameters in the mixture cure frailty model. Because the 

survival times within the same cluster conditional on frailties are assumed to be independent, the 

likelihood function for the jth cluster conditional on the frailty  is 
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the unconditional likelihood function can be derived when the distribution of frailty is specified. For example, 

if  follows gamma distribution, the likelihood function conditional on the frailty  is ju ju

=)(θjL ∫
−−

=∏ j
u

jjjk
n
k dueuuL jj σσ

σ

σΓ
σθ 1

1 )(
)|( , 

which does not include the unobserved information . In general, the unconditional likelihood function can 

be constructed by 
ju
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where  is the density function of . Then the maximum likelihood estimator of θ  can be derived 

through Newton-Raphson algorithm when the distribution of the frailty is specified.  
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3. Simulation study 

To assess the performance of the maximum likelihood estimators in the mixed cure frailty model, a 

simulation study is conducted. To generate clustered survival data from the mixed cure frailty model 

displayed in (2.1), the covariate of each subject in the cluster is generated first. A binary covariate  for 

the kth individual in the jth cluster is considered and generated from Bernoulli distribution with 
jkZ
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5.0)1( ==jkZP . Similarly, the cure status  for the kth individual in the jth cluster is generated from 

Bernoulli distribution with cured probability of 0.1, that is p = 0.9. Then the gamma frailty  controls 

within-cluster dependence of the jth cluster is generated from a one-parameter gamma distribution 

 with 

jkC

ju

)(/)( 1 σΓσ σσσ ju
jj euuf −−= 2=σ . Therefore, the expectation of  is 1 and the variance of  is 

2. Note that a smaller value of 
ju ju

σ  induces a more strong correlation between survival times within the 

cluster. Next, the baseline survival function for discrete survival times employed here is the same as in Zhao 

and Zhou (2008). The baseline hazard rates at each time point are specified as =0.200, =0.375, 

=0.300, =0.714, and =1 at =1, =2, =3, =4, and =5, respectively. 
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    For = 0, the survival time is generated from the frailty cure model, , with jkC )exp(*
0 )]([)( jkj Zu

jk tStS β=

β  equal to 0.3581. The censoring time  for the kth subject in the jth cluster is generated from three 

censoring distributions: (i) the censoring points are (3, 4, 5, 6, 7) with probability (0.2, 0.2, 0.2, 0.2, 0.2); (ii) 

the censoring points are (1, 2, 3, 4, 5) with probability (0.2, 0.2, 0.2, 0.2, 0.2); (iii) the censoring points are (1, 

2, 3, 4, 5) with probability (0.6, 0.1, 0.1, 0.1, 0.1). Finally, for the kth subject in the jth cluster, if the cure 

status =1, the observed survival time is setting to =  with the right-censored indicator 

jkU

jkC jkT jkU jkδ = 0, 

otherwise the observed survival time = }  with the right-censored indicator jkT ,min{ jkjk UX jkδ = 
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To understand the effect of equal cluster sizes on parameter estimation accuracy, the number of 

individuals within each cluster is chosen to be 2, 3, and 5 with the number of clusters chosen to be 300, 200 

and 120, respectively. Therefore, total number of subjects is 600 for each configuration. The simulation is 

repeated 500 times for all configurations. Tables I and II display the biases and standard errors of the 

estimators from the data with cluster size = 2 and 5, respectively. It can be seen that, the biases of the 

estimated baseline hazard rates , uncured probability p and β are very reasonable under three censoring 

proportions. As the censoring proportion increases, the standard errors of ,  

*
0îλ

*
0îλ ,p̂ σ̂  and  become 

larger. As cluster size increases, the biases of 

β̂

σ̂  and  decrease.  β̂

Moreover, to understand the impact of unequal cluster sizes on parameter estimation accuracy, the cluster 

size of each cluster is generated from discrete uniform distribution with 5 possible values 1, 2, 3, 4, and 5, 

and associated probability of 0.2, 0.2, 0.2, 0.2, 0.2, respectively. Table III displays the biases and standard 

errors of the estimators for three censoring settings based on 500 simulation runs with 300 clusters in each 

run. It can be seen that, the biases of the estimated baseline hazard rates , uncured probability p and β are 

very reasonable under three censoring proportions. Likewise, as the censoring proportion increases, the 

standard errors of ,  

*
0îλ

*
0îλ ,p̂ σ̂  and  become larger.  β̂

4. Example 
The model displayed in (2.1) is applied to one-stage non-submerged dental implant study described in 

Section 1. Gender and implant case type are considered as risk factors for demonstration purposes. There are 
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149 male and 175 female patients with 359 and 383 implants, respectively, the average cluster sizes of male 

and female patients are about 2.2 and 2.4, respectively, and the numbers of implant failures of male and 

female patients are 77 and 59, respectively. The Turnbull estimates of the survival functions for the two 

groups shows a slightly larger difference in the late period of the study. Implant case types is classified as 4 

groups, Single (single tooth replacement, 224 implants), FPD (458 implants), FDB (Fixed detachable bridge, 

19 implants) and overdenture (41 implants). Likewise, the Turnbull estimates of the survival functions for 

single and FPD implant case type shows a slightly larger difference in the late period of the study.  

The estimates from marginal regression approach and gamma frailty model are listed in Table V. Both 

approaches identify that that female has longer implant survival time. However, only the marginal regression 

approach identifies that FPD case type has longer implant survival time. Hence, diagnostic methods for 

identifying the model are need. 

 

Table I. The biases and standard errors of the estimators from the data with cluster size = 2. 

 Case I (20.29%)  Case II (43.26%) Case III (61.63%) 

 Estimate Bias SE  Estimate Bias S.E. Estimate Bias SE
*
10λ  0.2003  0.0003 0.0229  0.2004  0.0004 0.0236 0.2016  0.0016 0.0268
*
20λ  0.3742 −0.0008 0.0384  0.3749 −0.0001 0.0465 0.3783  0.0033 0.0639
*
30λ  0.3002  0.0002 0.0451  0.3010  0.0010 0.0598 0.3088  0.0088 0.0905
*
40λ  0.7081 −0.0059 0.0784  0.7079 −0.0061 0.1053 0.7202  0.0062 0.1426

σ  2.1934  0.1934 0.7507  2.3866  0.3866 1.3654 2.8543  0.8543 2.7839
β  0.3635  0.0054 0.1341  0.3644  0.0063 0.1495 0.3640  0.0059 0.1746
p  0.8984 −0.0016 0.0152  0.8982 −0.0018 0.0247 0.8964 −0.0036 0.0378

The value inside the parentheses is the average censoring proportion. 

Table II. The biases and standard errors of the estimators from the data with cluster size = 5 

 Case I (20.05%)  Case II (43.08%) Case III (61.47%) 

 Estimate Bias SE  Estimate Bias S.E. Estimate Bias SE
*
10λ  0.2003 0.0003 0.0226  0.1999 −0.0001 0.0242 0.2000 0.0000 0.0268 
*
20λ  0.3756 0.0006 0.0367  0.3746 −0.0004 0.0415 0.3745 −0.0005 0.0552 
*
30λ  0.3008 0.0008 0.0424  0.2994 −0.0006 0.0529 0.3013 0.0013 0.0734 
*
40λ  0.7138 −0.0002 0.0616  0.7107 −0.0033 0.0858 0.7118 −0.0022 0.1133 

σ  2.1535 0.1535 0.5805  2.2278 0.2278 0.7334 2.3670 0.3670 1.1840 
β  0.3544 −0.0037 0.1195  0.3592 0.0011 0.1378 0.3633 0.0052 0.1606 
p  0.8995 −0.0005 0.0146  0.8985 −0.0015 0.0235 0.8983 −0.0017 0.0352 

The value inside the parentheses is the average censoring proportion. 
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Table III. The biases and standard errors of the estimators from the data with variable cluster sizes. 

 Case I (20.12%)  Case II (43.05%) Case III (61.50%) 

 Estimate Bias SE  Estimate Bias S.E. Estimate Bias SE
*
10λ  0.1989 −0.0011 0.0178  0.1982 −0.0018 0.0188 0.1984 −0.0016 0.0212
*
20λ  0.3716 −0.0034 0.0299  0.3705 −0.0045 0.0336 0.3720 −0.0030 0.0457
*
30λ  0.2955 −0.0045 0.0322  0.2936 −0.0064 0.0429 0.2945 −0.0055 0.0588
*
40λ  0.7072 −0.0068 0.0537  0.7062 −0.0078 0.0735 0.7035 −0.0105 0.1050

σ  2.1000 0.1000 0.4528  2.1548 0.1548 0.5878 2.2153 0.2153 0.8126
β  0.3629 0.0048 0.1038  0.3687 0.0106 0.1183 0.3711 0.0130 0.1381
p  0.8999 −0.0001 0.0115  0.9010 0.0010 0.0193 0.9010 0.0010 0.0270

The value inside the parentheses is the average censoring proportion. 

Table IV. Estimates from marginal regression approach and gamma frailty model. 
 Methods 
 Marginal approach Gamma frailty model 

Covariates   Estimate (SE) p-value Estimate (SE) p-value 

Gender (female =0)      
male=1   0.393 (0.192) 0.041 1.563 (0.772) 0.043 

Cure rate  0.655 (0.037) 0.515 (0.058)  
σ  6.297 (1.170)  
Implant case type (single =0)    

FPD  −0.466 (0.216) 0.031 −0.643 (0.384) 0.094 
FBD  −0.992 (0.761) 0.192 0.234 (0.608) 0.884 
Overdenture  0.521 (0.362) 0.150 0.927 (1.148) 0.419 

Cure rate  0.639 (0.042) 0.541 (0.059)  
σ  4.263 (0.941)  
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