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1. Intoduction. 

  

Inference concerning the population coefficient of variation (C.V) has attracted the attention 

of several eminent researchers in the past. It dates back to the works of Mckay(1932) and 

Pearson(1932). At that time the primary concern was for the estimation and confidence interval 

for the C.V of the normal distribution. Subsequent works concentrated on the improved 

estimation of the confidence interval for the normal C.V. They include the works of 

Mahmoudvand and Hassani(2007) and Panchkitkosotkul(2009). Subsequently the focus was to 

develop tests for equality of the population C.V’s of two or more groups when the underlying 

distribution is normal. Likelihood ratio, wald and score test principles are used to develop the 

tests. The research papers in this direction includes Ahmed (2002), Nairy and Rao(2003) and 

Jafari and Behboodian(2010) and the reference cited therein. 

 For a long time inference regarding C.V did not draw the attention of survey statisticians. 

The first reported work is due to Das and Tripathi (1980) who proposed estimation of C.V when 

the design is simple random sampling without replacement (SRSWOR). Subsequently several 

papers have addressed the estimation of finite population C.V. One of the pioneering work in this 

direction is due to Tripathi et al., (2002) where in they proposed a class of estimators for the 

population C.V. This class includes the ratio and regression estimators of population C.V using 

sample C.V and certain hybrid estimators where regression estimators are used to propose a new 

ratio estimator. Patel and Shah (2007) examined the small sample mean square error (MSE) of 

several estimators including some estimators belonging to the hybrid class. All these estimators 

refers to the case of simple random sampling. Rajyaguru and Gupta (2006) proposed three classes 

of estimators of population C.V under stratified random sampling. Probability proportional to size 

sampling (PPS) is widely used in sample surveys. Thus it becomes important to propose 

estimators of C.V under PPS sampling. In this paper we have proposed an estimator of C.V under 

probability proportional to size with replacement sampling(PPSWR). The mean square error of 

the estimator is derived to the order of O(n
-1

). The performance of the proposed estimator is 

compared with the estimator under simple random sampling using simulations. It is common 
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practice in the applied research is to draw the samples using a particular sampling design but to 

use normal theory estimators for the analysis of the data. Thus the performance of the proposed 

estimator is also compared for the sample C.V when the samples are drawn using PPSWR 

scheme. The sample C.V under PPSWR scheme turns out to be the best estimator in terms of the 

MSE and justifies the practice followed by the applied researchers. 

The rest of the paper is organized as follows:  In section 2, estimators of C.V under PPSWR 

scheme is proposed. Small sample comparison of the performance of estimators of C.V is 

presented in section 3.  The results and discussions are given in section 4 and the paper concludes 

in section 5.  

 

2.  Estimators of C.V under PPSWR sampling. 

 

 In theory of sampling it is customary to denote the study variable by ‘y’ and the auxiliary 

variable by ‘x’. Let (Xi, Yi), i=1, .., N be the values of the variables ‘x’ and ‘y’ for the i
th
 unit in 

the population. Let Y  and 
2

yσ denote the population mean and population variance for the study 

variable where, 
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Now we can define the estimator of C.V under PPSWR as, 
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Another possible estimate of C.V under PPSWR is the sample C.V and is given by, 
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where y  is the sample mean using the PPS sample and 
2

y
s  is the sample variance using the PPS 

sample.  

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS010) p.4020



 3 

The sample C.V under simple random sampling scheme is defined as, 
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where y  is the sample mean and 
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y
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The expressions for the bias and MSE of the estimators 
21

ˆ ,ˆ
yy θθ  and 

3

ˆ
yθ are derived by the 

authors to the order of O(n
-1

). The derivations of MSE’s of the above estimators under PPSWR 
scheme is algebraically tedious, but since it is not used anywhere in the paper to save space these 

expressions are not reported here. 

 

3. Small sample comparison of the estimators of C.V. 

 

3.1. Simulation Experiment.  

A simulation experiment is carried out to compare the MSE’s of the various estimators. The 

expressions for the MSE of the estimators derived in the previous section were to the order of 

O(n-1) and thus are the asymptotic MSE’s. In order to estimate the exact MSE, it is necessary to 

go for a simulation experiment. The estimation of mean under PPSWR sampling scheme has got 

a smaller MSE compared to the estimator under SRSWR/WOR if the size variable is highly 

correlated with the study variable. Thus it is necessary to incorporate the correlation coefficient in 

the simulation experiment.  For this purpose 2000 samples were generated from a bivariate 

normal distribution. Care is taken to ensure that all the values of the size (auxiliary) variable is 

positive. From this population a sample of size ‘n’ is selected using PPSWR and SRSWR 

schemes. From the PPS sample the estimators of population C.V as given by equation (2.3) is 

computed along with the sample C.V. Using SRS samples, sample C.V is also computed. The 

MSE of these three estimators are estimated using 10,000 simulations. The configurations used in 

the simulations are the following. 

The values of the C.V of the study variable used in the simulations were 0.1, 0.3, 0.5, 0.8, 

1.0 and 2.0. For each fixed value of the study variable a set of four values of C.V of the auxiliary 

variable are considered. They are 0.5, 1.0, 1.5 and 2 times the C.V of the study variable. The 

correlation coefficients ‘r’ used in the simulation study are -0.9, -0.7,-0.5,-0.3,-0.1, 0, 0.1, 0.3, 

0.5, 0.7, 0.9. The sample sizes considered are n=100, 200.   

The total number of configurations works out to be=6*4*11*2=528. 

 

3.2 Small sample MSE. 

Table (3.1) represents the ratio of the MSE of the sample C.V under PPS sample and SRS 

sample compared to the estimator of C.V under PPS sample. For bravity the latter estimator is 

referred as the PPS estimator of C. V. Generally when comparing the MSE of the two estimators, 

the MSE of the estimator having smaller value is taken in the denominator. However since our 

motivation is compare the MSE of the sample C.V’s to the MSE of the PPS estimator, the MSE of 
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the latter is taken in the denominator. Thus a little caution is needed to interpret the results. The 

result is presented only for n=100 and the pattern remains the same for the other sample sizes. 

Before preparing this table, the MSE of the estimate of C.V is carefully examined for the 4 values 

of the C.V of the auxiliary variable for each of the estimators. The MSE almost remains the same 

irrespective of the C.V of the auxiliary variable and in the table (3.1) the ratio’s refers to the ratio 

of the average MSE of the estimator in the numerator to the average MSE of the estimator in the 

denominator; the average is taken over the four values of the MSE corresponding to the values of 

C.V of the auxiliary variable.  

 

Table 3.1: Relative MSE (%) of the sample C.V under PPS and SRS sample compared 

to the estimator of C.V under PPSWR. 

 
Correlation co-efficient ‘r’ 

(n=100) 
C. V of 

the 

study 

variable 
-0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9 

1θ̂  100 100 100 100 100 100 100 100 100 100 100 

2θ̂  4.76 5.00 5.56 5.00 4.54 4.76 5.26 5.00 4.76 5.26 4.76 

 

 
0.1 

3θ̂  23.81 25.00 27.78 25.00 27.27 28.57 26.32 25.00 23.81 26.32 23.81 

1θ̂  100 100 100 100 100 100 100 100 100 100 100 

2θ̂  1.98 2.18 2.35 2.46 2.50 2.57 2.63 2.71 2.74 2.20 2.01 

 

 
0.3 

3θ̂  3.28 3.34 3.44 3.53 3.49 3.68 3.94 3.80 4.10 3.37 3.32 

1θ̂  100 100 100 100 100 100 100 100 100 100 100 

2θ̂  5.28 5.17 6.08 5.68 6.19 6.00 6.18 6.02 5.90 5.30 5.15 

 
 

0.5 

3θ̂  6.38 6.89 7.22 7.55 7.44 7.60 8.11 8.43 7.38 6.71 6.19 

1θ̂  100 100 100 100 100 100 100 100 100 100 100 

2θ̂  17.82 17.86 18.43 18.78 19.15 20.32 18.89 19.53 18.08 17.87 18.01 

 
 

0.8 

3θ̂  20.14 19.87 20.97 21.33 23.18 25.48 23.92 23.41 22.89 21.28 20.06 

1θ̂  100 100 100 100 100 100 100 100 100 100 100 

2θ̂  33.82 36.57 35.68 36.83 36.60 36.72 36.98 37.15 36.82 36.67 34.11 

 
 

1.0 

3θ̂  38.41 39.81 37.88 39.06 38.99 38.87 39.14 39.49 39.33 38.67 36.46 

1θ̂  100 100 100 100 100 100 100 100 100 100 100 

2θ̂  45.70 46.96 47.01 47.89 47.67 48.04 48.43 47.98 47.78 46.54 46.01 

 

 

2.0 

3θ̂  54.57 55.97 56.08 56.24 56.89 56.64 57.29 56.94 57.03 56.10 55.87 

From the table it is clear that the estimator which has got the smallest MSE corresponds to 

the sample C.V under PPS sampling followed by the MSE of the sample C.V under SRS scheme. 

This is true for various values of the correlation coefficient. For moderate values of C.V, the 

relative efficiency ( i.e., inverse of the values reported here) of these 2 estimators is very high 
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compared to the PPS estimator of C.V. As the value of C.V of the study variable increases, 

although the efficiency is higher for these 2 estimators the gain in sample size is reduced. For eg: 

when yθ  =0.1, r=-0.9 the relative MSE of these 2 estimators are respectively 4.76 and 23.81. This 

indicates that when the PPS estimator requires a sample of size 100 to attain the same MSE, the 

sample C.V requires the sample size of 5 and 24 under PPS and SRS scheme. When yθ = 0.8, r=-

0.9 the relative MSE for these 2 estimators are 17.82 and 20.14 respectively indicating that a 

sample sizes of 18 and 20 are required to attain the same MSE of PPS estimator which requires a 

sample size 100.  

 We have examined the MSE of the PPS estimator across the correlation coefficients for 

each value of the C.V of the study variable. The results are not fully reported here to save space. 

Table (3.2) presents the MSE of the PPS estimator for 0.1, 0.5 and 1.0 for selected values of yθ . 

The results indicate that the MSE of the PPS estimator is relatively higher when the correlation 

co-efficient is low. 

Table 3.2: The MSE’s of the proposed three estimators for selected value of C.V of the 

study variable. 

 
Correlation co-efficient ‘r’ 

(n=100) 

C. V of 

the 

study 

variable 
-0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9 

1θ̂  
0.0021 0.0020 0.0018 0.0020 0.0022 0.0021 0.0019 0.0020 0.0021 0.0019 0.0021 

2θ̂  
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

 

 

0.1 

3θ̂  
0.0005 0.0005 0.0005 0.0005 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 

1θ̂  
0.0284 0.0290 0.0263 0.0265 0.0243 0.0269 0.0258 0.0249 0.0271 0.0283 0.0291 

2θ̂  
0.0015 0.0015 0.0016 0.0015 0.0015 0.0016 0.0016 0.0015 0.0016 0.0015 0.0015 

 

 

0.5 

3θ̂  
0.0017 0.0020 0.0019 0.0020 0.0018 0.0021 0.0021 0.0021 0.0020 0.0019 0.0018 

1θ̂  
0.0479 0.0432 0.0454 0.0448 0.0459 0.0463 0.0465 0.0471 0.0478 0.0450 0.0469 

2θ̂  
0.0162 0.0158 0.0162 0.0165 0.0168 0.0170 0.0172 0.0175 0.0176 0.0165 0.0160 

 

 

1.0 

3θ̂  
0.0184 0.0172 0.0173 0.0175 0.0179 0.0180 0.0182 0.0186 0.0188 0.0174 0.0171 

 

4. Discussions:  
 In this paper an estimator of population C.V is derived when the sampling design is 

PPSWR. Generally it is expected that this estimator performs well compared to the estimator of 

C.V namely sample C.V under SRS scheme. The numerical results indicate that for the estimation 

of C.V, SRS is more efficient compared to the PPSWR scheme. At the time of numerical 

computation it was observed that the estimator of 
2

yσ  using PPS scheme turns out to be negative 

in several cases. The percentage is approximately 20%. Thus the PPS estimator is not defined in 

such cases. A larger question that needs to be addressed is “Whether SRS sampling is more 

efficient for the estimation of compound parameters like C.V, skewness and kurtosis compared to 

the PPS scheme”. 

 The results indicate that the applied researchers are justified in using sample C.V as an 
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estimator of population C.V when the samples are drawn using PPRWR design. If this estimator 

is taken as the estimator of C.V under PPS design, then the PPS design turns out to be more 

efficient compared to the SRS design. 

 

5. Conclusion:    
 Two estimators are proposed for population C.V when the samples are selected using 

PPSWR scheme. The first estimator is the PPS estimator obtained by unbiasedly estimating 
2

yσ (population variance) and Y (population mean) using PPS scheme. The second estimator is 

the sample C.V. The sample C.V under PPS sampling turns out to be the best estimator compared 

to the PPS estimator and sample C.V under SRSWR.  We advocate that for greater efficiency it is 

advisable to select the sample using PPS scheme and use the sample C.V as an estimator of the 

population C.V. Further research is needed to shed light on the more general question namely 

“Whether using the estimator derived under SRS scheme turns out to be more efficient under PPS 

scheme for complex parameters like skewness, kurtosis and gini index”. Deriving estimators for 

these under PPS scheme is algebraically tedious while their estimators in SRS scheme turn out to 

be simple. 
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Abstract: Co-efficient of variation (C.V) is a unitless measure of dispersion and is widely used rather than 

standard deviation. In the recent years estimation of C.V in finite populations has drawn the attention of 

several researchers, however many of these works on C.V confined to the case of simple random sampling. 

In this paper an estimator of C.V is proposed in PPS sampling with replacement along with its asymptotic 

mean square error. The expressions for the design efficiency are also derived. The proposed estimator is 

compared with the estimator of C.V in simple random sampling with replacement using several real life 

data settings. By treating the finite population as a sample from an infinite normal population, the 

efficiency of the estimators in PPS with replacement sampling is compared with simple random sampling 

with replacement (SRSWR) using extensive simulation. The results indicate that for the estimation of C.V, 
PPSWR sampling is more efficient compared to SRSWR.  

 

Keywords: Co-efficient of variation, PPS sampling, Simple random sampling, Design efficiency, Model-

based comparison.  
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