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Introduction

Categorical data usually summarized by a contingency table are analyzed to investigate the

relationship between categorical response variables, or a categorical response variabe and explanatory

variable. We often encounter non-responses in such analyses, yielding incomplete contingency table

with partially classified counts or unclassified counts. Non-responses can be ignorable when they are

missing completely at random, or missing at random (Little and Rubin 2002). However, non-response

is nonignorable when they occur depending on their unobserved values in the sense that discarding

them or mis-specifying their missing mechanism leads to large variances and biases in estimating

parameters of interest (Chen 1972, Park and Brown 1994, Choi et al. 2009, Park and Choi 2010).

Fay (1986) used log-linear models to impute nonignorable nonresponse, and Baker and Laird

(1988) indicated that the maximum likelihood estimates (ML) often give rise to estimates on the

boundary solution of the parameter space and to imperfect fits for saturated models. They also

provided the conditions that ML falls on the boundary solution and, in particular, proposed a simple

condition of the boundary solution arising from a saturated log-linear model for a 2 × 2 contingency

table (i.e, one response variable and one explanatory variable both with two categories). Baker et al.

(1992) suggested the conditions for boundary solutions in two-way contingency tables where one or

both response variables can be missing. However, it is not easy to use those conditions because they

are not often in closed forms except special cases such as a two-way contingency table with the same

number of categories for both response variables.

To overcome the boundary solution problem, Bayesian approaches have been suggested. Park

and Brown (1994) and Park (1998) considered Bayesian models with empirical priors depending only

on responses. Clogg et al. (1991) used a constant prior for an incomplete one-way contingency table.

For two-way contigency tables, Choi et al (2009) and Park and Choi (2010) expanded Park and Brown

(1994) by introducing the priors depending both on responses and non-responses.

To see when a boundary solution problem occurs in the ML estimation for two-way tables, we

present an explicit condition expressed by ordered ratios of observed cell counts. This condition is very

simple, reduced to Baker and Laird (1988) when a 2 × 2 contingency table is considered, and easily

expanded to one-way and more-than-two way contingency tables. Using those conditions, we propose

a frequentist approach to escape such a boundary solution by employing a power transformation as a

link function instead of the usual log-linear or logit link function. However, this method may not be an

answer for the boundary solution problem in a contingency table with more than two categories because

the new condition is only a necessary condition for such a contingency table not to have a boundary
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solution. Thus, we priorly distribute a value between 0 and 0.5 to each cell, where, in particular, 0.5

is called the Jeffrey prior, and then use the power link function to guarantee the necessary condition

the ML is not on the boundary solution. The ML estimates under such a power link function are

compared with those under the logit link function for two-way tables with nonignorable nonresponses

using an empirical example and several scenarios of simulated data sets.

Conditions for boundary solutions

Let Y1 and Y2 be categorical variables indexed by I and J categories, respectively. We also let

R1 = 1 when Y1 is observed and R1 = 2 when Y1 is not observed and, similarly R2 = 1 for observed Y2

and R2 = 2 for unobserved Y2. Then the full array of Y1, Y2, R1, and R2 constructs an I × J × 2× 2

contingency table which has completely classified counts, partially classified counts, and unclassified

counts. To distinguish these three types of counts, let yijkℓ be the count belonging to the ith category

of Y1, the jth category of Y2, the kth value of R1, and the ℓth value of R2. Thus, yij11 is used for the

completely classified counts, yi+12 and y+j21 for respective column and row supplementary margins,

and y++22 for unclassified counts.

We consider the following model to describe a general form of nonignorable nonresponse models

which can be suffered from boundary solutions.

log (mijkℓ) = λ0 + λi
Y1

+ λj
Y2

+ λk
R1

+ λℓ
R2

+ λij
Y1Y2

+ λik
Y1R1

+ λiℓ
Y1R2

+ λjℓ
Y2R2

+ λjk
Y2R1

+ λR1R2
(1)

where the sum of each λ-term across its respective superscript is zero and mijkℓ = N · πijkℓ is the

excepted cell size. By assigning a symbol that lists the highest-order terms, we denote this model by

[Y1Y2, Y1R1, Y1R2, Y2R2, Y2R1, R1R2]. It is well known that the interaction terms of Y1R2 and Y2R1

do not introduce any boundary solution in likelihood estimation (Baker et al. 1992, Park and Choi

2010). Thus, we focus following five nonignorable nonresponse models : [Y1Y2, Y1R1, Y2R2, R1R2],

[Y1Y2Y1R1Y1R2, R1R2], [Y1Y2Y1R2, Y2R2, R1R2], [Y1Y2, Y1R1, R1R2], [Y1Y2, Y2R2, R1R2].

We assume that {yijkℓ} follow a multinomial distribution with observations, yij11, yi+12, y+j21,

and y++22, as given by

L =
∑

i

∑

j

yij11log(πij11) +
∑

i

yi+12log(πi+12) +
∑

j

y+j21log(π+j21) + y++22log(π++22)(2)

where πijkℓ = Pr[Y1 = i, Y2 = j,R1 = k,R2 = ℓ] and N =
∑

i,j,k,ℓ yijkℓ is fixed.

Let βij = mij21/mij11, γij = mij12/mij11. Under above five models, βij depends only on

subscript i and γij only on j. To stress these dependency, we denote them by βi· and γ·j, respectively.

Baker et al. (1992) showed that the ML estimates lie on the boundary of the parameter space if a β̂i·
from

∑

i m̂ij11β̂i. = y+j21 is negative or a γ̂·j from
∑

j m̂ij11γ̂.j = yi+12 is negative. They also showed

the closed form of ML estimates for mij11.

We now reduce a I × J × 2 × 2 to a 2 × J × 2 × 2 or a I × 2 × 2 × 2 contingency table by

aggregating all the counts from the second category to the last category over the variables Y1 and Y2,

respectively. Accordingly, we have observations, in a 2 × J × 2 × 2 contingency table, y∗
1j11 = y1j11,

y∗
2j11 =

∑I
i=2

yij11, y∗1+12 = y1+12, y∗2+12 =
∑I

i=2
yi+12, and the corresponding ML estimates are

denoted by m∗

1jkℓ = m1jkℓ and m∗

2jkℓ =
∑I

i=2
mijkℓ. Similarly, for the I × 2 × 2 × 2, observations

are y∗i111 = yi111, y
∗

i211 =
∑J

j=2
yij11, y

∗

+121 = y+121, y
∗

+221 =
∑J

j=2
y+j21, and the ML estimates are

m∗

i1kℓ = mi1kℓ and m∗

i2kℓ =
∑J

j=2
mijkℓ.

Using these new ML estimates m∗

ijkℓ, define β̂∗

ij = m̂∗

ij21/m̂
∗

ij11 for j = 1, 2 for the aggregated

I × 2× 2× 2 and γ̂∗ij = m̂∗

ij12/m̂
∗

ij11 for i = 1, 2 for 2× J × 2× 2. Then we have the following results.

Lemma 0.1. For the above five nonignorable nonresponse models, (i) when β̂ij = β̂i·, then β̂∗

ij = β̂∗

i·

and β̂∗

i· = β̂i· and (ii) when γ̂ij = γ̂·j, then γ̂∗ij = γ̂∗
·j and γ̂∗

·j = γ̂·j.
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This Lemma states that when a nonignirable nonresponse model includes the Y1R1 and/or Y2R2

terms in its log-linear model, then the respective positiveness of β̂i· and γ̂·j (i.e., whether or not the

ML estimates fall on a boundary solution) can be checked from the aggregated I × 2 × 2 × 2 and

2× J × 2× 2 tables, respectively instead of the full I × J × 2× 2 contingency table.

Moreover, this Lemma leads to the below simple conditions for a boundary solution by the

aggregated contingency table but not by the original I × J × 2 × 2 contingency table. To do this,

for the aggregated I × 2 × 2 × 2 contingency table, let vi = m̂∗

i111/m̂
∗

i211 for i = 1, 2, · · · , I, and

v = y∗+121/y
∗

+221. We also let vmax = max{vi} and vmin = min{vi}. For the aggregate 2× J × 2× 2

contingency table, let ωj = m̂∗

1j11/m̂
∗

2j11 for j = 1, 2, · · · , J , ω = y∗1+12/y
∗

2+12, ωmax = max{ωj} and

ωmin = min{ωj}.

Theorem 0.2. For nonignorable nonresponse models in a I × J × 2 × 2 contingency table, If ML

esitmates under a log linear link function are not on the boundary of the parameter space, v lies

between vmin and vmax and ω lies between ωmin and ωmax.

This theorem states that the ML estimates under the nonignorable nonresponse models including

the Y1R1 and/or Y2R2 terms are on the boundary of the parameter space whenever at least one of

v < vmin, v > vmax, ω < ωmin, and ω > ωmax is occurred.

A power transformation method

To overcome boundary solution problems, we propose a power transformation method using

our the conditions for boundary solutions. For simple discussion, we assume that v > vmax and

ω > ωmax and consider [Y1Y2, Y1R1, Y2R2, R1R2] because other nonignorable nonresponse models are

nested models of it. Define the following logit link functions: for all i = 1, 2, · · · , I, j = 1, 2, · · · , J ,

and k, ℓ = 1, 2 except i = M , j = 1, and k = ℓ = 1, and i = 1, j = M , and k = ℓ = 1 ( the subscript

M corresponding to vmax and ωmax as before),

log

(

πijkℓ
πIJ11

)

= ηiY1
+ ηjY2

+ ηkR1
+ ηℓR2

+ ηikY1R1
+ ηjℓY2R2

+ ηkℓR1R2
(3)

where πIJ11 stands for a reference cell probability. For i = M and j = 1, and i = 1 and j = M ,

1

αM111

((

πM111

πIJ11

)αM111

− 1

)

= ηMY1
+ η1Y2

+ η1R1
+ η1R2

+ ηM1
Y1R1

+ η11Y2R2
+ η11R1R2

(4)

1

α1M11

((

π1M11

πIJ11

)α1M11

− 1

)

= η1Y1
+ ηMY2

+ η1R1
+ η1R2

+ η11Y1R1
+ ηM1

Y2R2
+ η11R1R2

implying that we only use power link functions for mM111 and m1M11 that correspond to vmax =

mM111/mM211 and ωmax = m1M11/m2M11. Further, define

kv =
exp

[

1

αM111

((

πM111

πIJ11

)αM111

− 1
)]

πM111

πIJ11

and kω =
exp

[

1

α1M11

((

π1M11

πIJ11

)α1M11

− 1
)]

π1M11

πIJ11

.

Using these notations, then we have

Theorem 0.3. Suppose that v > vmax and ω > ωmax in a nonignorable nonresponse model. If αM111

and α1M11 are chosen to satisfy kv > v/vmax and kω > ω/ωmax, then the ML estimates under the link

functions of (3) and (4) satisfy the necessary conditions given in Theorem 0.2.

This result implies that, when v > vmax, the first power link function given in (4) produces a

new v∗max = kvvmax > v so that vmin < v < v∗max, and in a symmetric way, when ω > ωmax, the second
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power function gives a new ω∗

max = kωωmax > ω satisfying ωmin < ω < ω∗

max. Thus, the power link

functions defined by (4) move vmax and ωmax into some values greater than v and ω by mutiplying kv

and kω, respectively.

Remark 0.1. When v < vmin and/or ω < ωmin, replace (4) by

1

αN111

((

πN111

πIJ11

)αN111

− 1

)

= ηNY1
+ η1Y2

+ η1R1
+ η1R2

+ ηN1
Y1R1

+ η11Y2R2
+ η11R1R2

and
1

α1N11

((

π1N11

πIJ11

)α1N11

− 1

)

= η1Y1
+ ηNY2

+ η1R1
+ η1R2

+ η11Y1R1
+ ηN1

Y2R2
+ η11R1R2

,

where the subscript N is the category of Y1 corresponding to vmin and of Y2 corresponding to ωmin

and, accordingly, re-define

kv =
exp

[

1

αN111

((

πN111

πIJ11

)αN111

− 1
)]

πN111

πIJ11

and kω =
exp

[

1

α1N11

((

π1N11

πIJ11

)α1N11

− 1
)]

π1N11

πIJ11

.

Then take αN111 and α1N11 to satisfy kvvmin > v and kωωmin > ω.

Since the condition given in Theorem 0.2 is necessary for ML not to be on the boundary of

the parameter space, the power link functions may not guarantee no boundary solution in likelihood

inference. However, in 2 × 2 × 2 × 2 contingency tables, the condition given in Theorem 0.2 is a

necessary and sufficient condition for the ML estimates to be free from a boundary solution as shown

below

Corollary 0.4. For nonignorable nonresponse 2× 2× 2× 2 contingency tables, the ML estimates are

not on the boundary of parameter space if and only if vmin < v < vmax and ωmin < ω < ωmax.

Application and simulation

We compare power link functions with logit link functions using a real data and simulated data sets.

Bayesian approaches have successfully proved their usefulness to overcome the boundary solution

problem. Among others, the Jeffrey prior can be interpreted as a prior allocation of 0.5 observation

to each cell and is appeared to have good performance in avoiding the boundary solution problem as

we will show below. Thus, we include Bayesian methods with the Jeffrey prior in comparing power

and logit link functions.

First, we consider the data for a prospective study of pregnant women to assess the relationship be-

tween perinatal factors and subsequent development of abnormalities in the offspring used by Baker et

al (1992), and Park and Choi (2010). As a result, the ML estimates of expected cells under the logit

link function are appeared to be biased because of the boundary solution problem although the logit

model is saturated. However, the ML estimates under the power model are perfect fit with observa-

tions. The Bayesian estimates under the logit link function reveal imperfect fit with observation; the

Bayesian estimates under the power link function are much closer to their corresponding observations

than those under the logit link function.

For the simulation study, we generate 2 × 2 × 2 contingency tables for model [Y1Y2, Y2R2]. We com-

pare power link functions with logit link function as the response patterns between respondents and

nonrespondents. In Table 1, the smaller M , the more the response patterns are different between

respondents and nonrespondents.

The mean squared errors (MSE) are calculated for each missing cell under the logit and power link

function. The results are summarized in Table 1. Nonignorable nonresponse models with power link
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Table 1: MSEs for imputed cell expectations for model [Y1Y2, Y2R2]

M = 0.3 M = 0.5

ML Bayesian ML Bayesian

cell expectation logit power logit power logit power logit power

m1112 4134 1550 1570 840 2728 726 743 283

m1212 3452 922 1416 405 2125 302 605 62

m2112 3984 467 1529 67 2684 128 737 39

m2212 4745 930 1710 283 3258 353 846 37

sum 16315 3870 6225 1595 10796 1509 2932 421

M = 0.7 M = 0.9

ML Bayesian ML Bayesian

cell expectation logit power logit power logit power logit power

m1112 1955 373 416 111 1465 195 241 64

m1212 1439 92 301 23 1038 21 154 75

m2112 1850 34 376 191 1389 63 193 384

m2212 2374 114 462 32 1806 28 243 122

sum 7617 613 1555 356 5699 307 831 646

functions produces smaller MSEs than those with logit link functions both in the ML and Bayesian

estimates. In particular, the ML estimates with the power link function are better than the Bayesian

estimates with the logit link function. This is generally true for all other nonignorable nonresponse

2× 2× 2× 2 contingency tables because an appropriately chosen power link function always can avoid

the boundary solution problem as shown in Corollary 0.4. The Bayesian estimates under the power

function have the smallest MSEs for all cases except M = 0.9. Note that all four estimates have

smaller MSEs as the response patterns between respondents and nonrespondents becomes alike (i.e.,

M gets larger).

Data analysis and simulation study shows the power link functions performs betters the logit link

functions in both ML estimation and Bayesian estimation.
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