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ABSTRACT 

Outliers occur very frequently in survey data.  Some are corrected if they are error, but some are not if they are 
true.  The latter may spoil regression imputation by Ordinary Least Squares (OLS) and those with large 
aggregation weight may distort the figures in tabulation.  In this paper, a comparison of Iterative Reweighted 
Least Squares (IRLS) and OLS is made regarding regression imputation which explains the enterprise sales by the 
number of employees.  Aggregation weight calibration by the IRLS weight is also discussed.  The algorithm of 
IRLS is easy to calculate, robust to outliers in the dependent variable and therefore, estimated figures for 
imputation are more stable than those of OLS with existence of influential outlier.  In addition to values for 
imputation, IRLS provides a set of data weight which reflects deviation from the regression model.  We would like 
to propose adjusting aggregation weight with the IRLS weight so that the aggregation weight takes outlyingness of 
each observation into account.  It prevents over-representation of rare extreme observations in statistical tables. 
 
 

1. Introduction 
Non-responses in survey data are generally imputed to avoid bias in compiling official statistics.  As 

for the enterprise sales data, regression imputation by the number of employees may be applied among the 
variety of imputation methods.  OLS is generally used for the regression; however, it is well known that the 
existence of outliers makes its estimation unreliable and real data often contain them.  Such outliers have to 
be eliminated from the regression estimation by OLS, and their aggregation weight may also require an 
adjustment so that the rare extreme values do not have an excessive influence on statistical tables especially 
when the weight is large.  In this paper, a robust regression method called IRLS is used to accommodate 
those problems. 

In Section 2, we extend the IRLS algorithm so that the aggregation weight is considered.  Section 3 
describes the dataset used, fitting of imputation model, and the results of estimation for imputation.  Section 
4 explains the aggregation weight calibration. 

  
2. Methodology 
2.1 IRLS with aggregation weight 

Based on Fox and Weisberg (2010), we describe the M-estimation with aggregation weight regarding 
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the linear model 
iiiikkiii xxxy εεβββα +′=+++++= xβL2211  

for the i-th of n observations.  Given an estimator b for β , the fitted model is 
iikkiii xbxbxbay xb′=++++= L2211ˆ  

and the residuals are given by iii yye ˆ−= .
.   

The M-estimator with aggregation weight ig  is shown as follows with IRLS weight function  
)( ii eww = . 

 
         
 
Computing of the estimator takes the following iterative steps:  
 

1)  Compute initial estimate )0(b  by OLS as follows where [ ]′= nxxX ,,1 K , ),,( 1 ′= nyy Ky  and 
}diag{ ig=G . 

 [ ] GyXGXXb ′′= −1)0(      

2)  At each iteration j, calculate residuals )1( −j
ie , its mean absolute deviation )1( −js  and 

associated IRLS weight )1( −j
iw  according to the weight function ( ))1( −j

iew .   
3)  Solve for new weighted least squares estimates where }diag{ )1()1( −− = j

i
j wW . 

[ ] yGWXXGWXb )1(1)1()( −−− ′′= jjj     
 

     Steps 2) and 3) are repeated until the estimation converges.  We follow the proposal of 
Bienias et al. (1997) to stop iterating when )2()1( / −− jj ss  becomes less than 0.01.  The final IRLS weight 

)1( −j
iw  can be regarded as a scale of outlyingness and will be used for the aggregation weight calibration in 

Section 4.  
 
2.2  Weight function 

The following two weight functions are used for the analysis.  Constant c of the Tukey’s biweight 
function is 4 to 8 according to the setting of Bienias et al. (1977).  Corresponding Huber’s k is 1.15 to 2.30 
calculated from the tuning constant shown in Holland and Welsch (1977),.  

  Tukey’s biweight          Huber weight 
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3. Data and Imputation model 
3.1  Dataset and aggregation weight 

The dataset is derived from the financial statements database of Tokyo Shoko Research, Ltd. as of 
December 2003 using random stratified sampling by industry and category of number of employees.  The 
dataset contains industry, number of employees at the latest accounting period, and enterprise sales for the 
last three periods.  The enterprise sales are adjusted so that all the figures represent the 12 months period.  
The number of complete observations and its aggregation weight are shown in table 1.  The classification of 
industry is shown in table 2. 

( ) 0xxb =′′−∑
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i
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Table 1:  Number of complete data and aggregation weight by strata 

Industry 
Number of employees 

50-99 100-299 300-499 500- Total 

 Weight  Weight  Weight  Weight  Weight 
D 20 3.10 20 1.80 2 1.00 12 1.08 54 113 
E 41 96.34 37 44.89 37 6.81 296 1.00 411 6159 
F 41 336.32 44 200.70 38 40.00 1733 1.02 1856 25912 
G 17 3.71 19 2.42 5 1.20 26 1.00 67 141 
H1 36 124.75 34 89.50 35 11.89 444 1.03 549 8408 
H2 25 1.12 23 1.26 13 1.00 21 1.14 82 94 
I1 45 203.96 62 91.68 40 25.58 886 1.04 1033 16803 
I3 31 24.06 36 11.69 35 2.37 54 1.00 156 1304 
J 25 11.46 34 7.71 33 2.48 363 1.04 455 1006 
K 35 18.20 37 10.86 35 2.34 92 1.04 199 1217 
L 41 199.90 43 126.28 40 23.48 1379 1.08 1503 16058 

Total 357 41427 389 25845 313 4418 5306 5526 6365 97659207 

 
Table 2:  Classification of Industry 

D Mining 
E Construction
F Manufacturing
G Electricity, gas, heat supply and water

H1 Transport
H2 Information and communications
I1 Wholesale and retail trade
I3 Eating and drinking places, accommodations
J Finance and insurance
K Real estate
L Services 

 

3.2  Model selection 
In this paper, imputation of the enterprise sales ),,( 1 ′= nyy Ky  by the number of employees 

),,( 1 ′= nxxx K  is considered.  Due to the heteroscedasticity of the error term, the candidate models are as 
follows:   

A. Linear model with logarithmic transformation : εβα ++= xy loglog  
B. Linear model with square root transformation : εβα ++= xy  
C. Ratio estimation (without transformation)   : εα +=xy /  
D. Ratio estimate with square root transformation : εα +=xy /  

First, normality of xy / , xy log/log  and xy /  are compared to choose the data transformation.  
In addition to the Shapiro-Wilk test, a few goodness-of-fit tests based on empirical distribution such as the 
Anderson-Darling and the Lillieforce test are used.  Moment tests are not suitable for the purpose since one 
outlier makes the p-value considerably small.  Then, the scatter plot with regression line/curve and the 
residual plot are examined to decide a fit model for each industry.  The result is included in table 3. 

 
3.3  Imputation by IRLS 
     According to the fit model by industry, estimated value )(ˆ t

iy  is calculated for the three year periods 
respectively as follows where p is number of regression parameters. 
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A. 

  
 

 
 
D. 
 
 
Then the mean of )(ˆ t

iy
 
for each period )(

.
t

esty  is calculated.  The figure shown in table 3 is the 
standard deviation σ  of )(

.
t

esty  for the three periods and divided by 1000 to reduce the number of the printed 
digits.  Total is the square root of sum of 2σ . 

 
 
                      , 
 
In the table, “TK8” means Tukey’s biweight of c=8 and “HB8”, Huber weight of k=2.30.  Since the 

dataset has relatively longer tail than the normal distribution, the result of largest c and k are printed.  The 
figures of IRLS tend to be more stable than those of OLS regardless of the weight function and the standard 
deviation improves by using aggregation weight in IRLS estimation for most industries.  The total figure of 
“TK8/OLS” without aggregation weight is 9.8% and “HB8/OLS”, 22.8%.  

 
Table 3:  Fit model and standard deviation of the estimated mean 

Ind. Fit   
model

Number  
of data 

Standard deviation of the estimated mean 
OLS/1000 TK8/1000 TK8/OLS HB8/1000 HB8/OLS

D A 54  280 287 102.4% 306  109.5%

E D 411  1629 684 42.0% 685  42.1%

F A 1856  973 573 58.9% 690  70.9%

G A 67  7708 7850 101.8% 7895  102.4%

H1 A 549  403 220 54.5% 270  67.1%

H2 A 82  234801 14434 6.1% 49889  21.2%

I1 A 1033  492 473 96.2% 460  93.5%

I3 D 156  278 227 81.9% 221  79.8%

J A 455  11110 5301 47.7% 6232  56.1%

K A 199  4779 1602 33.5% 2132  44.6%

L A 1503  729 560 76.8% 544  74.6%
Total - 6365  235249 17382 7.4% 50954  21.7%

 

4. Calibration of the aggregation weight 
The mean of the enterprise sales )(ty  using the aggregation weight ig  is calculated as follows: 
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Usually aggregation weight ig  is the inverse of sampling probability.  We propose following new 
aggregation weight *

ig  which is adjusted ig  with the final IRLS weight iw  so that it reflects both 
sampling probability and outlyingness of observations.  The weight *

ig  is calculated by each stratum, i.e. 
by industry and category of number of employees regarding the dataset used here.   
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Proportional change of standard deviation σ′  of the mean )(ty  by weight calibration is shown in 
table 4.  The figures are divided by 1000.  

 
Table 4:  Effect of the weight calibration by sampling domain 

Ind. 

Tukey, c=8 [%] Huber, k=2.30 [%] 
Number of employees Number of employees 

50-99 100-299 300-499 500- Total 50-99 100-299 300-499 500- Total

D 254.1 46.0 61.0 99.4 70.3 291.2 56.1 58.2 97.6 84.6
E 99.4 90.5 115.6 117.7 115.2 100.4 89.3 104.2 135.9 117.5
F 139.1 42.2 90.6 101.3 76.6 141.5 56.9 97.4 101.5 83.4
G 77.8 290.4 100.9 110.8 113.0 75.1 267.9 100.0 107.0 109.0
H1 101.6 68.2 95.3 115.8 99.8 110.9 69.2 87.1 101.7 98.6
H2 88.5 88.5 80.9 104.0 104.7 87.6 89.8 100.0 103.6 103.3
I1 82.2 89.6 92.8 66.5 96.0 88.6 102.0 100.2 58.9 93.7
I3 104.8 100.1 125.8 96.1 102.5 100.0 104.8 118.4 100.8 104.1
J 1.1 8.6 379.2 86.2 67.9 24.3 30.7 412.8 87.6 73.4
K 88.2 106.7 94.2 42.8 84.4 90.2 100.0 100.1 43.6 86.7
L 94.9 76.6 91.7 107.3 86.8 108.8 74.0 99.9 104.8 86.7

Total 9.6 62.1 69.4 103.4 99.9 26.1 66.0 74.9 103.0 99.3

 

     Wada and Tsubaki (2011) describes there are two different factors which affect stability of the 
aggregated mean.  Mild outliers moving around marginal area across the periods slightly increase the 
standard deviation σ′  with *

ig  compared to that with ig
 
since any move of the IRLS weight through the 

periods differentiate the aggregation weight *
ig , too.  On the other hand, the figure with ig

 
soars 

compared to that with *
ig  in existence of any extreme outlier(s) especially when ig

 
is large.  Although 

the former negative effect seems relatively restrictive, the latter favorable effect of *
ig  increases according 

to the influence of outliers.  The figures in table 4 become less than 100 when the latter effect goes over the 
former.  The last row of the table shows a tendency of the weight calibration that it is effective especially in 
the domains with large aggregation weight.  
     Figure 1 shows a scatter plot of industry “J” (Finance and Insurance) for example.  The weight 
calibration shows the largest effect in domain #1 (employees 50 to 99) since there are two extreme outliers 
(No.389 and 466).  The original aggregation weight for this domain is 11.46 as shown in table 1.  On the 
contrary, the calibration makes the standard deviation about 4 times larger in domain #3.  It is because the 
standard deviation with *

ig  of this domain has extremely small figure as shown in table 5.  The figures are 
divided by 1000.  It is caused by the large fluctuation of extreme outliers of those move contradicts the 
trend of the majority.  
  

Table 5: Standard deviation of the mean (Finance and Insurance [J]) 

 
Sampling domain (by number of employees) 

50-99 100-299 300-499 -500 Total 

No calibration 6116 1820 120 12012 5794

Tukey, c=8 341 685 804 931 455

Percentage 1.1% 8.6% 379.2% 86.2% 67.9%
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Figure 1: Finance and Insurance [J] 
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RÉSUMÉ  

Outliers arrive très fréquemment dans les données d'enquête.  Quelques-uns sont corrigés s'ils sont l'erreur, mais 
quelques-uns ne sont pas s'ils sont vrais. Le dernier peut gâter l'imputation de régression par moindres carrés 
ordinaire (MCO) et ceux-là avec le grand poids d'agrégation peut déformer des figures dans la tabulation.  Dans 
ce papier, nous comarons MCPI avec MCO sur le poids d’agrégation qui explique les ventes d'entreprise par le 
nombre d'employés.  Nous discutons aussi le calibrage de poids d'agrégation par le poids de MCPI.  MCPI est 
facile à calculer, robuste à outliers dans la variable dépendante et donc, les valeurs estimées pour l'imputation 
sont plus d'écurie que ceux-là de MCO avec l'existence d'outlier influent. En plus des valeurs d'imputation, MCPI 
fournit aussi du poids de données qui est une échelle de l'outlyingness.  Ce poids de MCPI utilise à ajuster le 
poids d'agrégation pour que les valeurs extrêmes n'ont pas l'influence excessive dans les tables statistiques. 
 
 

NOTE:  The opinions expressed in this paper do not necessarily reflect those of organization to which the 
authors belong. 
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