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1.Introduction

James (1960) obtained the joint distributions of the characteristic roots of the covariance matrix

on Wishart matrix by constituting the zonal polynomials. It was epoch-making in the history of mul-

tivariate distribution theory. The many density functions and moments in multivariate analysis have

been expressed by the zonal polynomials and the generalized hypergeometric function of symmetric

matrix argument. Examples include the noncentral distributions of the characteristic roots in multiple

discriminant analysis (Constantine (1963)), the distributions of the largest characteristic root and the

corresponding characteristic vector of a Wishart matrix (Sugiyama (1966,1967)) and the distributions

of the largest and smallest root of a Wishart distribution of a multivariate beta distribution (Con-

stantine (1963)). Sugiyama (1979) obtained the coefficients of zonal polynomials up to degree 200

in the case of order 2 and the programming to compute them, expressed by a linear combination of

monomial symmetric function. At the practical point of view, it is very important that the cumulative

density function, moments, and so on are possible to compute in the case of order 3, and also higher

order.

The distributions expressed by the generalized hypergeometric function may be written by the

zonal polynomial series. Sugiyama, Fukuda and Takeda (1999) derived the partial differential equation

to obtain the recurrence relations of coefficients of the generalized hypergeometric function for their

computations. It is possible to calculate distribution expressed by generalized hypergeometric function

order 7. However, at the present computers it is very difficult to calculate the coefficients of order

more than 5. Hashiguchi and Niki (1997) derived the coefficients of zonal polynomials to elementary

symmetric polynomials of order 3. They showed some results of the exact values of the percentile

points of order 3.

In this paper, we discuss how to calculate zonal polynomials and generalized hypergeometric

functions by using a partially differential equation. The densities of the smallest characteristic roots are

calculated numerically up to 5 dimensions. Some percentile points are also shown for these statistics.
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2. Zonal polynomials

The zonal polynomials are an eigenfunction of the Laplace Beltrami operator,

∆ = (detG)−
1
2

n∑
k=1

∂

∂xk
(detG)

1
2

n∑
i=1

gik
∂

∂xi
,(1)

where x1, · · · , xn are coordinates of a point in a space with metric differential form

(ds)2 =
n∑

i=1

n∑
j=1

gijdxidxj , G = (gij) and (gij) = G−1.

On substituting the part of the Laplace Beltrami operator concerned with the roots, we have the

operator

∆ =
m∑
i=1

[
y2i

∂2

∂y2i
− 1

2
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In detail we may see in James (1968).

The zonal polynomials of a matrix are defined in terms of partitions of positive integers. Let

k be a positive integer. A partition κ of k is written as κ = (k1, k2, . . .), where
∑

i ki = k. We order

the partitions of k lexicographically, that is, if κ = (k1, k2, . . .) and λ = (l1, l2, . . .) are two partitions

of k, we write κ ≻ λ if ki > li for the first index i for which the parts are unequal. Let y1, · · · , ym
be m variables. If κ ≻ λ we say that the monomial yk11 · · · ykmm is of higher weight than the monomial

yl11 · · · ylmm .

Let Y be an m × m symmetric matrix with the characteristic roots y1, · · · , ym and let κ =

(k1, · · · , km) be a partition of k into not more than m parts. The zonal polynomial of Y corresponding

to κ, denoted by Cκ(Y ), is a symmetric homogeneous polynomial of degree k in the characteristic

roots y1, · · · , ym such that;

(i) The term of the highest weight in Cκ(Y ) is yk11 · · · ykmm , that is

Cκ(Y ) = cκ,κy
k1
1 · · · ykmm + terms of lower weight,(3)

where cκ,κ is a constant.

(ii) Cκ(Y ) is an eigenfunction of the differential operator ∆Y given by

∆Y =
m∑
i=1

y2i
∂2

∂y2i
+

m∑
i, j = 1

i ̸= j

y2i
yi − yj

∂

∂yi
.(4)

(iii) As κ varies over all partitions of k the zonal polynomials have unit coefficients in the expansion

of (tr Y )k, that is

(tr Y )k = (y1 + y2 + · · ·+ ym)k =
∑
κ

Cκ(Y ).(5)

So the zonal polynomial of Y corresponding to the partition κ satisfies the partial differential equation

∆Y Cκ(Y ) = [ρκ + k(m− 1)]Cκ(Y ),(6)

where ρκ =
∑m

i=1 ki(ki − i).

The monomial symmetric function Mκ(Y ) of the matrix argument for a partition κ is a homo-

geneous polynomial of degree k, defined as

Mλ(Y ) = yk11 yk22 · · · ykmm + symmetric terms.
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On substituting the formula (3) of the zonal polynomial we have the recurrence relation between the

coefficients cκ,λ,cκ,µ of the monomial symmetric functions Mλ(Y ),Mµ(Y ) as follows

cκ,λ =
∑

λ≺µ⪯κ

(li + r)− (lj − r)

ρκ − ρλ
cκ,µ(7)

where

ρλ =
m∑
i=1

li(li − i), λ = (l1, · · · , lm) and µ = (l1, · · · , li + r, · · · , lj − r, · · · , lm).

The elementary symmetric function Eκ(Y ) of the matrix argument for a partition κ is also a

homogeneous polynomial of degree k, defined as

Eκ(Y ) = ek1−k2
1 ek2−k3

2 · · · ekm−1−km
m−1 ekmm ,

where e1 = y1 + y2 + · · · + ym, e2 = y1y2 + · · · + ym−1ym, . . . , em = y1y2 · · · ym. Hashiguchi et

al. (2000) have given a transition algorithm from Cκ(Y ) to Eµ(Y ), providing the recurrence relations

shown in the following proposition between the coefficients q[κ, µ] in

Cκ(Y ) =
∑
µ⪯κ

q[κ, µ] Eµ(Y ),(8)

where the symbol ⪯ signifies the reverse lexicographic ordering.

q[κ, µ] =


q0[κ], if κ = µ;

1

d[κ]− d[µ]

∑
µ≺ν⪯κ

b[ν, µ] q[κ, ν], if κ≻ µ and d[κ] ̸= d[µ],

0, otherwise;

(9)

where

q0[κ] = 2k k!

(
m∏
i=1

(2ki − i+m)!!

)−1 ∏
1≤i<j≤m

(2 ki − 2 kj − i+ j)!!

(2 ki − 2 kj − i+ j − 1)!!
(10)

and each b[ν, µ] is determined by

Dm Eν(Y ) =
∑
µ⪯ν

b[ν, µ] Eµ(Y ).(11)

3. Numerical results

This section is based on Hashiguchi and Niki (2006) that provided the exact computation on

the distribution of the smallest characteristic root. Let W be distributed as Wm(n,Σ) and let ηn
denote the smallest characteristic root of W/n. This statistic might be considered as the most natural

estimator of the smallest characteristic root of Σ.

Table 1 shows E(ηn), SD(ηn) and the upper 5% point x.95(ηn) for several combinations of m, n,

and Σ, with some graphs of densities in Fig. 1.

Estimation of population’s smallest characteristic root using ηn from those numerical results

might be limited in those cases where the population’s smallest characteristic root is sufficiently

separated from any other (larger, say) characteristic root of Σ, m is very small and n is sufficiently

large. It is noteworthy that, when Σ = Im, even upper 5% points are smaller than the population

value 1, for m = 3, 4, and n ≤ 30.
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Table 1: Properties of the distribution of ηn.

(a) Σ = Im (b) Σ =

(
Im−1 0

0 3

)
m n E(ηn) SD(ηn) x.95(ηn)

2 9 0.5937 0.2791 1.1117

19 0.7162 0.2179 1.1042

25 0.7518 0.1963 1.0972

31 0.7767 0.1803 1.0911

3 10 0.4144 0.1904 0.7664

20 0.5685 0.1665 0.8629

24 0.6031 0.1582 0.8802

30 0.6421 0.1477 0.8981

4 9 0.2570 0.1376 0.5154

19 0.4484 0.1375 0.6917

25 0.5099 0.1307 0.7378

m n E(ηn) SD(ηn) x.95(ηn)

2 9 0.8160 0.3983 1.5604

19 0.9163 0.3012 1.4605

25 0.9374 0.2681 1.4168

31 0.9500 0.2436 1.3827

3 10 0.5042 0.2354 0.9406

20 0.6624 0.2005 1.0190

24 0.6951 0.1893 1.0289

30 0.7308 0.1753 1.0371

4 9 0.2999 0.1615 0.6036

19 0.5051 0.1574 0.7848

25 0.5676 0.1486 0.8275
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(a) When m = 3 and n = 30. (b) When m = 4 and n = 31.

Figure 1: Probability density functions of ηn for several Σ’s.
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