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Abstract: Modal interval-valued data is one of the most important types of symbolic data and each unit of its 
matrix contains a histogram or a distribution function. In this paper, a new method through Principal 
Component Analysis of modal interval-valued data is discussed. This Principal Component Analysis (PCA) 
method aims to reduce the dimensions of a large dataset by reconstructing the covariance matrix. The 
fundamental elements of the covariance matrix such as mean, variance and the covariance and their 
definition method is important in Principal Component Analysis. Some of the current researches on Principal 
Component Analysis of modal interval-valued data have contributions to dimension reduction of modal 
interval-valued data by transforming the histogram-valued data into interval data. In other existing methods, 
the definition of mean is in distributive data form and the mean is an average level for all modal-valued data 
observations. However, data centralization based on the mean defined this way actually obtains the residual 
distribution. The result of Principal Component Analysis in accordance with the matrix of residual 
distributions may thus fail to present the essential variation of the original data accordingly. In this paper, we 
define numerical characteristics of modal interval-valued data as real constants which can make full use of 
information in histograms. Centralization in terms of constant numerical characteristics is to relocate the 
modal-valued variances as a whole to get original histograms whose gravity center is settled on the origin. 
Therefore, the Principal Component Analysis of modal interval-valued data with constant numerical 
characteristics based on the obtained covariance matrix is proposed. Simulation proves the effectiveness of 
the proposed method. 
Key words: Modal interval-valued data; Principal Component Analysis; Constant Numerical Characteristics 
 
1 introduction 

Symbolic data analysis method is one of the most groundbreaking theoretical achievements in modern 
statistical data analysis field. Modal interval-valued data is one of the symbolic data types and each unit of a 
high-dimensional modal interval-valued data matrix contains a histogram or a distribution function.  

This paper will focus on PCA of modal interval-valued data. The routine method applied on PCA on 
modal interval-valued data is transforming it into interval data by a certain transformation method. For 
instance, Rodriguez O., Diday E., Winsberg S.[1] (2000) and Sun Makosso Kallyth, Edwin Diday[2] (2010) ; 
thus it can be analyzed by Principal Component Analysis method of interval-valued data. 

A more direct method for histogram PCA was presented by P. Nagabhushan and R. Pradeep Kumar[3] 

(2007). In the paper, they defined unit histogram, null histogram, and the basic arithmetic operations of 
histogram such as addition, subtraction, multiplication, division and proposed a histogram PCA. However, 
means of histogram variables based on the above method is in histogram form, and data centralization 
obtains the residual histograms consequently. The result of PCA histogram with the matrix of residual 
histograms may thus fail to represent the essential variation of the original data accordingly. 

In this paper, we attempt to explore a new PCA method for modal interval-valued variables. Based on 
the method of numerical characteristics integral calculation on continuous random variables in probability 
theory, we firstly define constant numerical characteristics about modal interval-valued data, then implement 
them for dimension reduction modeling of model interval-valued dataset through PCA. The proposed method 
not only can make use of complete information in the histogram, but also may give a more reliable 
conclusion, since data centralization on the basis of the constant numerical characteristics. Furthermore, an 
approximate method to calculate the linear combination of modal interval-valued variables is given 
according to the algorithm of univariate histograms theory of histogram-valued data[4] (2006) combined with 
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Moore algebra[5] (1962) in interval data analysis. Thus the projecting original modal interval-valued data to 
principal axes can be realized. 

This paper is structured as follows: Section 2 introduces several basic definitions about numerical 
characteristics of modal interval-valued data and the derivation process and calculation steps of PCA on 
modal interval-valued data; simulation is conducted in section 3 to validate the effectiveness of the proposed 
method; the last section gives out the summary. 

 
2 Methodology 

We consider a n p  data matrix ( )n p ij n px Χ , which is called modal interval-valued data, and whose 
elements are all random variables that follow a histogram or a distribution function. 

Here { , }ij ij ijx I f  means the random variable   defined on the field of definitions
ijI with the 

density function  ijf  。For histogram data, the density function of histogram data  ijf  would be denoted 
as follows, 
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where ijK  is the number of modalities of ijx , and 1[ , )k k k

ij ij ijI x x   is the jth sub-interval of 
ijI ，which 
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ijp is the frequency of k

ijI . It is assumed that within each sub-interval k

ijI , 

the random variable   is uniformly distributed across the sub-interval. Hence, for histogram data ijx  also 
can be denoted as follows: 

1{ , } { [ , ), , 1, , }, 1, , ; 1, ,k k k

ij ij ij ij ij ij ijx I f x x p k K i n j p       . 

2.1 The first moment, second moment and second order mixed moment 
According to classical probability theory, the first moment, second moment and second order mixed moment 
of modal-valued variable can be defined as follows: 
Definition 1. For a modal-valued variable jX , the first moment is given by 
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Where the first moment of unit ijx  is defined as 
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Accordingly, the centralization of ijx  is given by  

     1E { [ E , E ), , 1, , }, 1, , ; 1, ,k k k

ij ij j ij j ij j ij ijy x x x p k K i n j p         X X X .   (4) 
Definition 2. Given any two modal-valued variables jX and kX   j k , the second order mixed moment is 
defined as 
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Where 

             E E Eij ik ij ik ij ij ij ikx x f f d d f d f d x x          
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Here ijx  and ikx  are supposed to be independent. 
Definition 3. For any modal-valued variable jX , the second moment is defined by 
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Therefore the covariance and variance of modal-valued variables ,j kX X  are as follows: 
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         
2 22D E E E Ej j j j j   X X X X X .                   (10) 

2.2 Linear combination algorithm of modal interval-valued variables 
Linear combination algorithm for interval-valued variables has been introduced by Moore(1962), the 

definition can be expressed as follow: 
Definition 4. Given p  interval-valued variables 1 2, , , pX X X , all with n  observations and real 
numbers  1,2, ,ja j p  , each observation can be regarded as a hypercube. Define an interval-valued 
variable Y  as a linear combination of 1 2, , , pX X X , viz. 
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With Definition 4, an algorithm to calculate the linear combination of modal interval-valued variables 
can be presented. Given p  modal interval-valued variables 1 2, , , pX X X , and real numbers 

 1,2, ,ja j p  , an modal interval-valued variable Y  as a linear combination of 1 2, , , pX X X can be 
defined as follows, 

1

p
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

Y X ,                                  (12) 

where Y is a histogram vector，each element can be expressed as follows, 
1{ , } { [ , ), ; 1,2, , }k k k

i i i i i i iy I f y y p k K      ，where max{ 1, , ; 1, , }i ijK K i n j p   。 

For the ij th histogram ijx , the number of modalities ijK , each sub-interval has its density function as 
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According to the above mentioned steps, we can get the linear combination of all variables in the i th 
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histogram observation.  
 
2.3 The Algorithm 

For convenience, suppose the modal interval-valued vectors are all centralized. With the above definitions, 
we begin to derive the Principal Component Analysis method for modal interval-valued data. Similar to the 
numeric case, the kth modal interval-valued data PC  1,2, ,k k pY  is a linear combination of 

1 2, , , pX X X , i.e., 
1

p

k k kj j

j
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 Y Xu X , where  1,2, ,kju j p  , with the constraints of 1k u  and 

 0 1,2, , ,k l l p l k   u u . Also, the first m  principal components 1 2, , , pY Y Y  must maximize total 
variance to represent the original information carried by 1 2, , , pX X X . According to definitions proposed 
above, we have 
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where V  represents the covariance matrix of 1 2, , , pX X X . 

The following derivation is the same with the classical PCA that for numeric data, i.e., looking for m  

orthogonalised vectors 1 2, , pu u u  to achieve maximization of  
1
D

p

k

k

 Y  with      1 2D D D p  Y Y Y  

by solving equations of  1p p p k p  Vu u . Thus, 1 2, , pu u u  are the orthonormal eigenvectors of V , 
corresponding to the eigenvalues 1 2 p     . By algorithm of linear combination of modal-valued 
variables, see formula (12), we finally get the kth modal-valued PC 

k kY Xu . 

3 Experimental Results of Synthetic Data Sets 
This section we conduct a comparison between PCA of modal interval-valued data and PCA of numeric data. 

The histogram dataset will be generated in Monte-Carlo simulation method. And the numeric dataset 
corresponding to this histogram dataset will be obtained by differentiating

ijI , the field of definitions of the 
histogram. The comparison will focus on the eigenvalues and eigenvectors of the covariance matrix of 
histogram dataset and numeric dataset. It’ll be concluded that the eigenvalues and eigenvectors are similar for 
the two types of data. The calculation results of numeric dataset tend to the histogram dataset’s results when 
the number of differentiation in ijI becomes lager. 
3.1. Dataset 
3.1.1 Histogram dataset 

 We implement Monte-Carlo simulation method to generate a 50 4  histogram dataset. For 
generality, we take all the number of modalities as three. Therefore, the ij  histogram { , }ij ij ijx I f can 
be generated randomly by the two steps as follows. 
1) Define the generation method of field of definitions: generate the center  ~ 5,5C

ijx U   randomly and 

the radius  ~ 1,10R

ijx U , thus we can get the interval of histogram [ , ]C R C R

ij ij ij ij ijI x x x x    and divide the 

interval ijI  equally into three parts, we obtain 1[ , ), 1, ,3k k k

ij ij ijI x x k  . 

2) Define the generation method of density(frequency) function:  generate three data 1 2 3, ,ij ij ijq q q ，where 
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 ~ 0,1 , 1,2,3k

ijq U k  , then orthogonalize the data as follows: 
3

1

k

ij ij

k

Q q


 ， / , 1,2,3k k

ij ij ijp q Q k  . 

Meantime, it satisfies the constraint 3

1
1k

ij

k

p


  and we can get the density function of the ij th 

histogram in the dataset. 
3.1.2 Numeric dataset 

When we get the histogram dataset, for each histogram we get a numeric dataset by differentiating the 
field of definitions. That is for each histogram { , }ij ij ijx I f , to choose m positive integer numbers in the 
field of definition interval ijI  with dividing the kth sub-interval equally into ( 1, , )k

ijm p k K   parts, 
therefore the numeric dataset bide by approximately to the distribution of ijx . We call m  as the number of 
differentiation. The larger of the number of differentiation, the more similar of numeric dataset to the 
histogram. For example, for two dimension histogram, 

( , ) ({[2,3),0.2;[3,4),0.5;[4,5],0.3},   {[5,6),0.2;[6,7),0.7;[7,8],0.1}x y   
Fig1 shows the conditions of m =20 and m =50 respectively. In the left chart there are 441 points 

while there are 2601 in the right chart. 

 
Fig1. The diagram of numeric dataset with the conditions of m =20 and m =50 

Therefore, a p dimension histogram is expanded into a  1 p
m numeric dataset, on which classical 

multivariate analysis can be performed. It proves the method proposed in this paper is reasonable, if the 
calculation results obtained by PCA tend to the histogram dataset’s while the number of differentiation is 
increasing 
3.2 The simulation result of PCA of histogram data 

For the 50 4  histogram dataset generated above, we calculate its eigenvalues and eigenvectors of its 
covariance matrix by PCA method; the eigenvalues are sorted descending as follows: 

* * * *
1 2 3 4=23.5362 =20.4752 =19.3498 =15.0953   ； ； ； . 

And the corresponding eigenvectors are showed in table 1. 
Table 1. Eigenvectors of corresponding eigenvalue 

1

*u  
2

*u  
3

*u  
4

*u  

-0.6325 0.6589 -0.1626 0.3734 
0.1177 0.4471 -0.4286 -0.7763 
0.6725 0.2391 -0.4836 0.5067 
0.3659 0.5557 0.7456 -0.0362 

In the following part, we compare the eigenvalues and eigenvectors of histogram data and numeric 
data. Assume the number of differentiations are 10、20、30、40、50、70、100 and 200, we calculated the 
eigenvalues 2

m and eigenvectors m
ju 1,2, ,4; 10,20,30,40,50,70,100,200j m  . For the eigenvalues, we 

take Absolute Error to compare the both, i.e.:  
*( , ) , 1, ,4; 10,20,30,40,50,70,100,200m

j j jAE m j m      . 
For the eigenvectors, we take the Absolute Cosine Value, which is defined as follows: 
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*

*
ACV

m

j jm

j m

j j






u u
u u

， 10,20,30,40,50,70,100,200, 1, ,4m j   

The horizontal axis in Fig2 denotes the number of differentiation. In the left chart of Fig2 the curves 
show the AE changes while the number of differentiation is increasing, we can see the AE is getting smaller 
while the number of differentiation is on the increase. The vertical axis of the right chart denotes ACVm

j , the 
results shows the absolute error of ACVm

j  converges to 1 while the number of differentiation is increasing 
which illustrates the angle between the two compared vectors converges to 0. The obtained components are 
more alike when the similarity is high.  
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Fig2.The AE of eigenvalues and ACE of eigenvectors 

Finally，we contrast the sample distribution of first principle component of numeric data and histogram 
data. The first principle component of histogram data is obtained by the linear combination of histogram as 
section 2.2, while the first principle component of numeric data is calculated the empirical distribution 
frequency. For saving computation, we take m=10, the sample size of number dataset is 4(10 1) 50  .  Then 
the results of Two Independent Samples Kolmogorov-Smirnov test from the 50 samples show that both 
distributions are consistent.  

 
4 Conclusion 

This paper proposed a new PCA method based on numeric characteristic constant type for modal 
interval-valued variables, which is drawn on the method of numerical characteristics integral calculation on 
continuous random variables in probability theory, In the process of computation, the method not only adopts 
the complete information of histogram, but also make the characteristic analysis clear and the result is 
reasonable and precise. The simulation proves the rationality and effectiveness of the method. 
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