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1 Context and issues

The time series are decomposed into several types of changes: trend, seasonality, volatility and noise.
They may be more or less regular as the application domain. Behavioral changes that characterize
these series are mainly of several types: peak (price of energy in tense situation, but on a very short
period), jumps in level or trend (or separation of gathering data stream), jumps variability (yield
of the FTSE 100). Modeling of these series is very delicate and requires a lot of experience in the
application domain. It may be interesting to detecting changes in behavior for many applications
in the pre-treatment or not: construction of sub-models in each segment, stationnarized series using
segmentation, building of symbolic curves to achieve a clustering of curves, modeling of multivariate
time series, etc. Many segmentation methods [3,4,5,6,7] have been and are developed to address
various problems in economics, finance, human sequencing, meteorology, energy management, etc.
Most of these methods rely on the use of dynamic programming to reduce drastically the number of
segmentations possible because it would obviously be totally illusory to calculate them all. Indeed, the
number of segmentations for a series of length T and S fixed number of segments is

(
T−1
S−1

)
whereas the

set of all segments S = 1, T , the total number of segments increases to 2T−1. The complexity of these
algorithms is in general O(T 2). These methods of detecting break points are designed to solve three
problems [5]: (i) detecting a change in the mean, with a constant variance, (ii) detecting the change in
variance with a constant mean (iii) detecting changes in the overall distribution of the phenomenon,
without distinguishing changes in level, variability and distribution errors.

We introduced a method [2], which not only reduces the complexity compared to other methods, but
mainly to propose solutions segmentation of the series containing segments increasing, decreasing,
constant and different dispersions. Our method is original in its approach as it moved, in stages, a
decision support for data segmentation. It contains two main phases: data preparation with a first data
segmentation and modeling of segments using a Gaussian heteroskedastic linear model by successive
adaptations. Each of the two phases is repeated a few times depending on the degree of smoothing
applied to the data. The degree of smoothing can vary from 1 to T theory. The empirical complexity
is O(T

√
T ) and the theoretical complexity is O(T 2). This method has been tested on many series

and has provided encouraging results on both simulated data to assess the quality of reconstruction of
the series: detection and modeling segments, but mainly on real data, especially in the area of price
formation energy market.

But for all the segmentation methods that are based on a dynamic programming approach or an
exploratory approach as ours, it appears that the segmentation quality may be lacking in the detection
of contiguous segments when levels (or constant slopes) were statistically similar but have different
variances. In this case only one segment will be detected, then there are two structurally. Therefore,
we propose in this paper, a new method improves the previous one. This new approach has three
phases. The first is to establish a proper transformation of data to obtain a new set characterizing
the temporal evolution of the dispersion of observations, the second phase amounts to segmenting
this new series with the same principle as the method [2] to obtain segments of dispersion, and the
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third phase reapplies [2] but taking into account the distribution of segments of dispersion, especially
in the construction of the heteroscedastic linear model. To test our approach, we then conducted a
comparative study with dynamic programming algorithms proposed in [6]. As we can see the quality of
results was considerably improved. Finally, we propose to extend the comparisons with other methods,
as well as future researches for the generalization of two theorems introduced in this article.

2 The proposed method

2.1 The model and its inference

Let’s be a time series (Yt)t=1,T , we assume that it decomposes according to the Gaussian heteroskedas-
tic linear model (or variance components) [8] as follows:

(1) Yt =
S∑

s=1

(β(s)
0 + β

(s)
1 t + σsεt)1[t∈τs]

where β
(s)
0 , β

(s)
1 and σs > 0 are respectively the parameters of level, slope and dispersion for the segment

τs and εt follows a standard Normal. Finally, the number of observations per segment τs is denoted
Ts with

∑S
s=1 Ts = T . Each segment τs contains the set of values: Yt for t = Us−1 + 1 to Us, where

Us = Us−1 + Ts, finally US = T . There are so 3S parameters to be estimated, knowing the number of
segments S is unknown. To estimate the Gaussian heteroskedastic linear model, several estimators are
available: ordinary least squares (OLS), maximum likelihood (ML) and restricted maximum likelihood
or residual (REML).

2.2 The general process of segmentation

The approach introduced in [2] contains two phases: the first is the preparation of data, while the
second is to establish successive models based on the model (1). Data preparation consists of three
steps: smoothing, differentiation and counting. Smoothing aims to summarize the time series so as
to keep only the strong trends in the series. For this, we chose to use the moving median as it is
much more robust than the moving average. The degree of smoothing, denoted j (j > 1) is the
number of observations in the moving median mj(t) for t = 1, T − j + 1. Over j increases, unless the
irregularity of the data is taken into account. The differentiation step can detect trends in the series
on which the moving median was used. The differentiation must be high enough to appear differences
in trend, but not too much not to miss. We chose to consider the property of the moving median
with a difference at time t and time k = j/2 if j is even, and k = (j + 1)/2 if j is odd. The counting
step uses the results of stage of differentiation which has established a series of differences in positive,
negative or zero, the number of values of the same sign is reasonably based on the degree of smoothing.
Indeed, the lower it is, the more chances are that the size of the series of the same sign is small. Each
serie will correspond to an initial segment. The first segment τ

(0)
j,1 contains T

(0)
j,1 observations of the

same sign, then the second segment τ
(0)
j,2 include the T

(0)
j,2 observations of the same sign but different

from that of τ
(0)
j,1 , etc. At the end of the process, we get a vector of segments (τ (0)

j,1 , ..., τ
(0)
j,s , ..., τ

(0)
j,S ),

size (T (0)
j,1 , ..., T

(0)
j,s ..., T

(0)
j,S ) and

∑S
s=1 T

(0)
j,s = T . However, this initial exploratory segmentation usually

contains too many segments, especially the degree of smoothing is small. The objective is then to
sum (simplify) the best (with the least possible loss of information) that prior segmentation. For this
model (1) is proposed in the modeling phase. It takes place in several steps of simplification of the
proposed model from it. Each step is divided itself into several stages based on the following inference:
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(i) model estimated by REML, (ii) test of homoskedastity on overall series, (iii) test for equality of
each slope coefficient associated in its segment, (iv) and for the constants, (v) test of homoskedasticity
of each pair of successive segments, (vi) test for equality of the pairs of slope coefficients and (vii) test
for equality for couples constants. Each stream contains not then a more simplified than the previous
step in preserving the quality of the statistical model. The rule is based on minimum values from the
REML estimator, the origin of the estimated final model, information criteria BIC, AIC and R2 fit,
and that the MAPE (Mean Absolute Percentage of Errors).

2.3 A new approach to pre-estimate of the dispersion

As indicated, the method [2] has provided encouraging results on different types of time series whether
simulated or real, compared with methods based on dynamic programming. But for all the segmen-
tation methods developed that are based on a dynamic programming approach or on an exploratory
approach as ours, it appears that the segmentation quality may be lacking in the following scenario.
Upon detection of contiguous segments: levels (constant or linear) are close but have statistically
different variances, in this case only one segment will be detected instead of two. The new method
proposed here has a particular aim to overcome this problem. This new approach has three main
phases. The first is to establish a proper transformation of data to obtain a new set characterizing
the temporal evolution of the dispersion of observations, the second phase amounts to segmenting this
new series with the same principle as the method [2] to obtain segments of dispersion, and the third
phase reapplies [2] but taking into account the distribution of segments of dispersion, especially in the
construction of the Gaussian heteroskedastic linear model.

2.3.1 Steps 1 and 2: Transformation characterizing the volatility time series and the
first segmentation

The goal is to build a new time series to exhibit volatility of time series observations that are assumed
to be governed by the model (1). The transformation is the most natural differentiation of order 2,
such that: Zt = (1 − B)2Yt where Yt is the original time series. It is then possible to apply two
operators on Zt: Ut =| Zt | or Vt = Z2

t . The two following theorems can obtain the variance σ2 from
these transformations.

Theorem 1: Let Yt a Gaussian process i.i.d. indexed be in time with mean β0 +β1t and variance σ2,
as Yt = β0 + β1t + σεt, where εt is a standard normal, then σ =

√
π

2
√

3
E(| Yt − 2Yt−1 + Yt−2 |).

Demonstration: Let Yt a Gaussian process i.i.d. be indexed in time with mean β0 +β1t and variance
σ2, asking Zt = Yt − 2Yt−1 + Yt−2 then Zt = σ(εt − 2εt−1 + εt−2) is zero mean and variance 6σ2.

Calculate the distribution Ut =| Zt |=| Yt − 2Yt−1 + Yt−2 |. It raises the cumulative distribution
function associated with Ut: FUt , such that FUt(ut) = P[Ut < ut] = P[| Zt |< ut] = P[−ut < Zt <

ut] = 2P[Zt < ut]− 1 = 2FZt(ut)− 1. The density function associated is: fUt = 2fzt .

Finally, calculate the expectation of Ut : E(Ut) = 2√
6σ
√

2π

∫ +∞
0 ute

− u2
t

12σ2 dut. We put st = u2
t

12σ2 then

dst = ut
6σ2 dut. Therefore, we get E(Ut) = 2

√
3σ√
π

∫ +∞
0 e−stdst = 2

√
3σ√
π

[−e−st ]+∞0 = 2
√

3σ√
π

, QED.

The first theorem provides an estimate of σ, as σ̂U =
√

π

2
√

3(T−2)

∑T
t=3 | yt − 2yt−1 + yt−2 |.

Theorem 2: Let Yt a Gaussian process i.i.d. indexed in time be with mean β0 +β1t and variance σ2,
as Yt = β0 + β1t + σεt, where εt is a standard normal, then σ2 = E((Yt−2Yt−1+Yt−2)2)

6 .

Demonstration: Let Yt a Gaussian process i.i.d. indexed in time be with mean β0 +β1t and variance
σ2, asking Zt = Yt − 2Yt−1 + Yt−2 then Zt = σ(εt − 2εt−1 + εt−2) is zero mean and variance 6σ2.
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Calculate the distribution Vt = Z2
t = (Yt − 2Yt−1 + Yt−2)2. It raises the cumulative distribution

function associated with Vt: FVt , such that FVt(vt) = P[Vt < vt] = P[Z2
t < vt] = P[−√vt < Zt <

√
vt] = 2P[Zt <

√
vt]− 1 = 2FZt(

√
vt)− 1. The density function associated is: fVt = 1√

vt
fZt .

Finally, calculate the expectation of Vt: E(Vt) = 1√
6σ
√

2π

∫ +∞
0 v

1/2
t e−

vt
12σ2 dvt. We put wt = vt

12σ2

then dwt = dvt
12σ2 . Consequently, we have: E(Vt) = 12σ2

√
π

∫ +∞
0 w

1/2
t e−wtdwt. We use integration by

parts, putting: rt = w
1/2
t , so drt = 1

2w
−1/2
t dwt and dst = e−wtdwt then st = −e−wt . The integral

takes the following form: 12σ2
√

π
([−w

1/2
t e−wt ]+∞0 + 1

2

∫ +∞
0 w

−1/2
t e−wtdwt) = 6σ2

Γ(1/2)

∫ +∞
0 w

−1/2
t e−wtdwt =

6σ2. Indeed, The integral divided by Γ(1/2) is equal to one because its corresponds to cumulative
distribution function on the entire domain of γ(1/2) distribution, QED.

This second theorem gives an estimator of σ2, as σ̂2
V = 1

6(T−2)

∑T
t=3(yt − 2yt−1 + yt−2)2.

The results obtained using the previous two theorems are essential for the second phase because they
allow to appear in each observed series ut or vt, levels of dispersion of segments of the candidate series.
Indeed, the segmentation approach explained in paragraph 2.2. is then applied, either on the series ut

or on the series vt. At the end of the process, the segmentation will provide a selected set of segments
characterized by the model (1). The straight line segments obtained can be constant, increasing or
decreasing, which provide additional information on the behavior of interesting data that may be
heteroskedastic even on a segment.

Let now τσ
1 , ..., τσ

S1
be, S1 the segments of dispersion obtained previously on the series ut. Then the

segment τσ
s provides an estimate of Ts values of ut such that ût = α̂0 + α̂1t for t ∈ τσ

s .

2.3.2 Step 3: Second segmentation taking into account the dispersion

This third and last phase aims to provide a final segmentation of the original time series Yt taking into
account the dispersion of data which is estimated using phase 2. For this, two solutions are possible.
Each value Yt is standardized by ût in order to eliminate the scattering effect from the beginning of
segmentation, that is to say, the smoothing step in the phase data preparation. Either ût are only
integrated in the modeling phase to structure the dispersion matrix of Gaussian heteroskedastic linear
model (1). This means using a diagonal matrix of weights when estimating model parameters using
the REML estimator. v̂t is used in the same way that ût.

3 Application

We applied the new method on the same set of simulated data we used in [2] to compare the results
are output. We chose 10 segments, depending on model (1). For each of 10 segments, the number of
observations, the values of the coefficients β0 and β1 and standard-deviation σ are generated randomly.
Furthermore, we compared our results with those obtained using dynamic programming algorithms
developed in [6]. They can detect multiple breakpoints in a time series. These are estimated by
minimizing a penalized contrast function. The types of changes detected are: mean with constant
variance, variance with constant mean, mean and variance (named DCPC3 in Figure 2a), distribution
(DCPC4, 2b) and in the spectrum. In addition, a version was developed as Bayesian approach on the
types of change (BDCPC3 and BDCPC4, the figures 2c and 2d). In this case, the moments of failure
are exhibited by minimization of a posterior distribution. The mode of this posterior distribution is
the minimum estimate of the penalized contrast.

We use the quantities ut in phases 1 and 2, and the estimated values of these weights as the Gaussian
heteroskedastic linear model in Phase 3. Figure 1a shows the simulated series (blue), the segments
generated and the associated temporal evolution of ut (red) end of phase 1. It may be noted that ut are
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not constant on average, meaning that significant segments of different level of dispersion exist. Figure
1b provides the results of the first segment on the ut (phase 2) on which 12 segments of dispersion were
detected. We can see that all segments are not constant, because the second and ninth segments are
growing. Figure 1c shows the final segmentation, which consists of 18 segments in which all the breaks
seem to be detected. It was the same for the method [2] segmentation in which 12 segments had been
identified (Figure 1d). Visually, the respective qualities of the two segmentations are comparable.
However, although this is not very visible, additional segments of the new approach can best cut
variation. For example, the fourth segment of the method [2] which is divided into two sub-segments
with the new approach, a variation was actually appear heterogeneous series (more variability in the
first sub-segment in the second). By cons, figures 2a-2d, which provide the results of the leak detection
by dynamic programming are much less satisfactory. Indeed, in Figure 2a (DCPC3), the first three
and last breaks are not detected by the algorithm, even if there are only seven segments. This problem
extends to DCPC4 and BDCPC4 that should be more precise, since this type of detection freer, more
that 16 segments. Finally BDCPC3, which gives a prohibitive number of segments (28 segments),
also fails to properly identify the first three breakpoints and the last, like the three other methods of
dynamic programming.

The quality of the raw signal recovery and adequacy of segmentations estimated by six methods to
the segmentation generated is provided in Table 1. For this, we find that the values of MAPE of
our old and new methods are very similar to that of the segmentation generated, whereas this is not
the case for three methods of dynamic programming in four. It is the same for the median (MED)
distributions of percentage absolute errors. The next column provides the percentage of errors less
than 10%, on which appears the most efficient BDCPC4 (89.79%), although the MAPE is very high
(59.85%). Finally, the last two columns provide the number of segments of each method identified
the same place as those of the segmentation generated. Again, our two approaches are most effective
on this dataset than the other four, with 6 segments found, against 0, 2 or 3 for methods of dynamic
programming. These results are complemented by the error of the estimated distance of the segments
to the segments generated. The method proposed in this paper obtains a relatively low percentage
error (16.26%) compared to the former (24.34%) and the four other approaches, the best is that
BDCPC3 still 35.28% error.
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Figure 1: a,b,c,d : New and old approaches ————- Figure 2: a,b,c,d : Dynamic programming
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Method Nb. seg. MAPE (%) MED (%) <10% B. seg. Err. seg. (%)
Generated data 10 9.90 2.32 87.32 n.a. n.a
Method [2] 12 11.06 2.37 87.00 6 24.34
New method 18 9.89 2.30 86.29 6 16.26
DCPC3 7 75.80 4.48 67.31 0 36.77
DCPC4 17 59.72 4.00 70.29 3 52.00
BDCPC3 28 12.77 2.55 83.68 2 35.28
BDCPC4 16 59.85 4.03 89.79 3 48.94

Table 1: Results of the six methods

4 Contributions, reviews, applications and future directions

The method proposed here, which is used to segment a time series, aims to improve a process in-
troduced in [2]. It had achieved encouraging results on simulated data and real data. It competes
strongly approaches based on dynamic programming. The proposed improvement is to produce a
signal from the raw data representing their dispersion through two theorems, and then perform an
initial segmentation [2] of it to take segments of dispersion, and finally to include these as weights in
a second segmentation [2] during the phase of successive models. On the simulated example, this new
approach allows both to improve the old method, but also shows that it is more efficient than dynamic
programming approaches [6]. This method is particularly interesting for applications in which signals
change process. For the future directions, we will compare our method to that developed in [1] which
uses a cross-validation. Finally, the two theorems introduced, in this paper, to a Gaussian signal will
be generalized to other distribution of probability in our future research.
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