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Abstract

In a Poisson regression model, where observations are either clustered or represented by repeated
measurements of counts, the number of observed zero counts is sometimes greater than the expected
frequency by the Poisson distribution and the non-zero part of count data may be overdispersed.
The zero-inflated negative binomial (ZINB) mixed regression model is suggested to analyze such
data. Previous studies have proposed score statistics for testing zero-inflation and overdispersion
separately in correlated count data. Here, we also deal with simultaneous score tests for zero-
inflation and overdispersion in two-level count data by using the ZINB mixed regression model.
Score tests are suggested for 1) zero-inflation in the presence of overdispersion, 2) overdispersion in
the presence of zero-inflation, and 3) zero-inflation and overdispersion simultaneously. The level and
power of score test statistics are evaluated by a simulation study. The simulation results indicate
that score test statistics may occasionally underestimate or overestimate the nominal significance
level due to variations in random effects. This study proposes a parametric bootstrap method to
overcome this problem. The simulation results of the bootstrap test indicate that score tests hold
the nominal level and provide good power.

keyword : Zero-Inflation, Overdispersion, Generalized Linear Mixed Models, Zero-Inflated Neg-
ative Binomial, Score Test, Bootstrap

1 Introduction

In fields such as medicine, public health, epidemiology, sociology, psychology, engineering, and agri-
culture, among others, the analysis of count data is a topic of major interest. For count data, Poisson
regression models have been widely used to explain the relationship between the outcome variable
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of interest and a set of explanatory variables. However, there are often the cases that the number
of observed zero counts is greater than the expected frequency by the Poisson distribution. In such
cases, a standard Poisson model may not perform well. A fair number of statistical methods has been
developed to address count data with extra zeros. Böhning (1998) reviewed the related literature and
presented some examples from a wide variety of disciplines. A popular approach for analyzing count
data with excess zeros is to use the zero-inflated Poisson (ZIP) regression model by Lambert (1992).
The ZIP regression model is a mixture of the Poisson distribution and a degenerate component of
the point mass at zero. Van den Broek (1995) proposed a score test for zero-inflation under a Pois-
son distribution. This was extended to ZIP and zero-inflated binomial (ZIB) regression models with
covariates (Deng and Paul, 2000; Jansakul and Hinde, 2002).

Both zero-inflation and dependency can often be present in hierarchical count data in which ob-
servations are either clustered or repeatedly measured from individual subjects. For example, subjects
sampled from a common habitat (called a cluster) such as families, schools, and communities are more
likely to be similar to one another than those sampled across different habitats, resulting in correlated
responses within the cluster. Dependency among responses can be explained by hierarchical structures
using random effects. Hall (2000), Yau and Lee (2001), Hur et al. (2002), and Wang et al. (2002)
considered ZIP regression models with cluster-specific random effects to address the heterogeneous
variances between clusters. Xiang et al. (2006) proposed a score test for zero-inflation in correlated
count data. Lee et al. (2006) extended the ZIP regression model to a multilevel ZIP regression model
with random effects. Recently, Moghimbeigi et al. (2009) proposed a score test for zero-inflation in
multilevel count data.

Although the ZIP regression model can handle zero-inflation for Poisson data, the non-zero
part of count data may be overdispersed. Under the Poisson distribution, the mean and the variance
should be the same. In some applications, however, the variance often exceeds the mean, causing
overdispersion. ZIP parameter estimates can be severely biased if nonzero counts are substantially
overdispersed compared with the Poisson distribution. In such a case, the use of a zero-inflated
negative binomial (ZINB) distribution can be a good alternative. Ridout et al. (2001) considered
overdispersion in count data and proposed a score test for testing the ZIP regression model against
ZINB alternatives. For hierarchical or correlated count data, it is especially true that ZIP parameter
estimates can be severely biased when nonzero counts are overdispersed. Xiang et al. (2007) proposed
a score test for assessing overdispersion based on the ZINB mixed model, while those of Xie et al.
(2009) and Yang et al. (2010) focused on the zero-inflated generalized Poisson (ZIGP) mixed model.
However, a simultaneous score test for zero-inflation and overdispersion in the ZINB mixed model or
the ZIGP mixed model has not been proposed. Deng and Paul (2005) considered simultaneous score
tests for zero-inflation and overdispersion in the ZINB regression model, but their model does not
involve random effects for clustered count data.

In this paper, we deal with score tests for zero-inflation and/or overdispersion in two-level count
data fitted by the ZINB mixed regression model. We propose score tests for 1) zero-inflation in the
presence of overdispersion, 2) overdispersion in the presence of zero-inflation, and 3) zero-inflation
and overdispersion simultaneously. Section 2 describes the ZINB mixed regression model. Section 3
suggests score tests for zero-inflation and/or overdispersion in the ZINB mixed regression model. We
carried out a simple simulation study to check the adequacy of approximation of score test statistic.
It indicates that the asymptotic null distribution works less well for larger σu because it would lead to
more variations on the parameter estimates and consequently a larger variance for the score statistic.
Thus, the score test statistics may occasionally underestimate or overestimate the nominal significance
level due to variations in random effects. To solve this problem, Section 4 proposes a parametric
bootstrap method.
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2 ZINB Mixed Regression Model

Let Yij be the jth response of a count variable from the ith cluster. Then the ZINB distribution can
be written as

P (Yij = yij) =

{
φij + (1− φij)(1 + αλij)−1/α if yij = 0

(1− φij)
Γ(yij+1/α)
yij ! Γ(1/α) (1 + αλij)−1/α

(
1 + 1

αλij

)−yij

if yij > 0

for i = 1, . . . ,m and j = 1, . . . , ni, where m is the number of clusters, ni is the number of observations
for cluster i, and α > 0 is an overdispersion parameter. Here φij and λij indicate the proportion of
zero-inflation and the mean of the Poisson distribution, respectively. The mean and the variance of
the ZINB response variable are given by

E(Yij) = (1− φij) λij ,

V ar(Yij) = (1− φij)λij(1 + φijλij + αλij).

The parameters φij and λij can be modeled by linking linear predictors as follows:

log
(

φij

1− φij

)
= ξij = w′

ijγ + ui,

log(λij) = ηij = x′ijβ + vi,

where γ and β are the corresponding p× 1 and q × 1 vectors of regression coefficients for the logistic
and Poisson models, respectively. The same explanatory variables can be used, and then wij would be
equal to xij , and p would be equal to q. In these models, responses in different clusters are assumed to
be independent, whereas those within the same cluster are likely to be correlated. To accommodate
inherent correlations within clusters, random effects ui and vi are incorporated into the linear predictor
ξij for the zero-inflation model and ηij for the Poisson model. The random effects u = (u1, · · · , um)′

and v = (v1, · · · , vm)′ are assumed to be independently distributed as N(0, σ2
uIm) and N(0, σ2

vIm),
respectively, where Im denotes the m×m identity matrix.

Parameter estimation can be achieved by the restricted maximum likelihood (REML) approach
of McGilchrist(1994). The penalized log-likelihood is given by l = l1 + l2, with l1 being the log-
likelihood function with conditionally fixed random effects and l2 being the log-likelihood of random
effects.

l1 =
∑
i,j

I(yij=0)log(φij + (1− φij)(1 + αλij)−1/α) +
∑
i,j

I(yij>0)[log(1− φij)

− log(yij !) + log(Γ(yij+1/α)
Γ(1/α) )− (yij + 1/α) log(1 + αλij) + yij log(αλij)],

l2 = −1
2

[
m log(2πσ2

u) + σ−2
u u′u + m log(2πσ2

v) + σ−2
v v′v

]
.

That is, l1 is the log-likelihood of the ZINB variable expressed as a function of the linear predictors ξij

and ηij and the overdispersion parameter α of the negative binomial distribution with conditionally
fixed u and v. l2 is the log-likelihood of independently and normally distributed u and v. Let the
parameter vector of interest be α, γ, β, u, v. With suitable initial values, the REML estimates of
α, γ, β, u, v can be obtained iteratively by maximizing l via an EM algorithm to ensure convergence
by assuming that σ2

u and σ2
v are fixed. The variance component estimates for σ2

u and σ2
v are then

computed from estimating equations involving REML estimates. For more details on the estimation
procedure, the reader is referred to Yau et al.(2003).
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3 Score Tests

3.1 Joint Score Test for Zero-Inflation and Overdispersion

A test of H0 : θ = α = 0 is equivalent to a simultaneous test for zero-inflation and overdispersion
in the zero-inflated negative binomial mixed model. Let τ = σ2

v . Taking the first and second deriva-
tives of l with respect to β, v, τ, θ, and α, the score function Uθα and the Fisher information matrix
=θα(β, v, τ, θ, α) can be obtained. Details of the derivatives are given in Appendix C. Under the null
hypothesis H0 : θ = α = 0, the reduced model is the Poisson mixed regression model. The score Uθα

is obtained by evaluating the derivatives of l with respective to θ and α at the REML estimates β̂, v̂,
and τ̂ of the Poisson mixed regression model:

Uθα = [Uθ, Uα] =

∑
i,j

{
I{yij=0} exp(λ̂ij)− 1

}
,

1
2

∑
i,j

{
(yij − λ̂ij)2 − yij

} .

The expected Fisher information matrix is then

=θα(β, v, τ, θ, α) =


Jββ Jβv Jβτ Jβθ Jβα

Jvv Jvτ Jvθ Jvα

Jττ Jτθ Jτα

Jθθ Jθα

Jαα

 ,

where the entries of =θα(β, v, τ, θ, α) under H0 are obtained by evaluating the second derivatives of
l at θ = 0 and α = 0. The formula is given in Appendix C. The matrix =θα(β, v, τ, θ, α) may be
partitioned as follows:(

=11 =12

=′
12 =22

)
,

where =11 =

 −T ′BT −T ′BP 0
−P ′BT −P ′BP + τ̂−1Im −τ̂−2v̂

0 −τ̂−2v̂′ −τ̂−2m/2 + τ̂−3v̂′v̂

 ,

=′
12 =

(
1′NBT 1′NBP 0

0 0 0

)
, =22 =

(
Jθθ Jθα

J ′
θα Jαα

)
,

Jθθ =
∑
i,j

(
exp(λ̂ij)− 1

)
, Jθα = 1

2

∑
i,j

λ̂2
ij , Jαα = 1

2

∑
i,j

λ̂2
ij ,

with the matrices T , P , and B defined in Appendix C. The score statistic for jointly testing for
zero-inflation and overdispersion in the ZINB mixed regression model is then

Sθα = U ′
θα=θα Uθα,

where =θα is the lower right-hand of the 2×2 matrices of the inverse information matrix =−1
θα , which is

evaluated at the REML estimates of the Poisson mixed regression model. Under the null hypothesis,
the test statistic Sθα asymptotically follows a χ2

2 distribution.

3.2 Inadequacy of approximation of score test statistics

To check the appropriateness of χ2 approximation of score test statistic, we carried out a simple
simulation study. We assessed the effect of varying σv on the sampling distribution of S by simulating
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Figure 1. Q-Q plots of ordered score statistics against χ2
2 quantiles based on 1000 replications generated from the Poisson

mixed model under H0 : φ = α = 0 with σv = 0.1(broken line), 0.5(solid line), 1.0(broken-dotted line)

1000 samples for σv = 0.1, 0.5, and 1 on two sample sizes (m = 10, n = 10) and (m = 40, n =
40). We present results for only joint test, but the other tests show similar results. The resulting
Q-Q plots, given in Figure 1, confirm that the asymptotic null distribution is satisfactory for smaller
σv value because of less variation in the random component. For larger σv, however, the asymptotic
null distribution works less well. This result is consistent with Xiang et al.(2006) and Moghimbeigi et
al.(2009). They mentioned that larger σv would lead to more variations on the parameter estimates and
consequently a larger variance for the score statistic. On the other hand, the asymptotic distribution
of the score statistic is often approached to χ2 more slowly than that of the likelihood ratio statistic.
Thus, significance levels derived from the score statistic may be misleading, particularly in small
sample sizes. Due to this reason, the score test might underestimate the nominal significance level in
small sample cases for testing a ZIP regression model against ZINB alternatives Ridout et al.(2001).
Jung et al.(2005) proposed a parametric bootstrap method to overcome the underestimation of the
nominal level. We consider the bootstrap method to avoid these problems and to obtain more accurate
inference.

4 Bootstrap Method

Proceed with the following steps:

• Step 1.
For the given data (Yij , xij), i = 1, · · · ,m, j = 1, · · · , ni, obtain the REML estimates β̂∗, v̂∗i , σ̂2∗

v

under the Poisson mixed regression model and compute λ̂ij = exp(x′ij β̂+ v̂i) and the score statis-
tic Sθα.

• Step 2.
Generate a bootstrap sample Y ∗

ij from the Poisson (λ̂ij) distribution.

• Step 3.
For each bootstrap sample (Y ∗

ij , xij), i = 1, · · · ,m, j = 1, · · · , ni, obtain the REML estimates
β̂∗, v̂∗i , σ̂2∗

v and compute the bootstrap score test statistic S∗
θα.

• Step 4.
Repeat Steps 2 and 3 independently B times. From the B possibly different values of S∗

θα, obtain
the 100(1− c)th percentile of S∗

θα, S∗
θα(1− c).

• Step 5.
If the score test statistic Sθα is greater than S∗

θα(1 − c), then reject the null hypothesis at the
significance level c.
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