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Discrete survival times can be considered as ordered multicategorical data. In the ordinal data mod-

elling context, a variety of multinomial regression models can be used including the baseline-category

logit model, the cumulative logit model, the adjacent-category logit model or the continuation-ratio

logit model. This last model has been given some attention in the literature (Agresti, 2002). Such a

model form is useful when the ordered categories represent a progression through different stages, such

as survival through various times. This particular model has the advantage of being a simple decom-

position of a multinomial distribution as a succession of hierarchical binomial models. The property of

conditional independence enables to fit it by adapting the methods available for binary response data.

When one have ordered replicated data, random effects can be incorporated into the linear predictor

to account for uncontrolled experimental variation. An increasing number of papers are concerned

with random effects models for ordered categorical responses (Ten Have and Uttal, 1994; Tutz and

Hennevogl, 1996).

In this paper, we focus on random effects continuation-ratio models. We consider a continuation-

ratio model and we include a random intercept into the linear predictor in order to analyse grouped

toxicological data. More precisely, the data considered here have been obtained from a biological

control essay realized by the Insect Pathology Laboratory of ESALQ-USP, Sao Paulo, Brazil (De

Freitas, 2001). In this essay, different isolates of the fungus Beauveria bassiana are used as a microbial

control for the Heterotermes tenuis termite which causes a lot of damage in sugarcane fields in Brazil.

In this context, experiments have been carried out to study the pathogenicity and the virulence of the

fungus in order to determine effective isolates for the control of this pest population. The obtained

data set compares 142 isolates of the fungus. A solution of each isolate is applied to 5 groups of 30

termites and the cumulative mortality in each group is measured daily during an 8-day period after the

application of the fungus. A simple graphical representation of the cumulative proportions of dead

termites shows different isolate efficacities and different degrees of variability among the replicates

within the different isolates. Thus, the aim of this study is to determine effective isolates for use in

the field by taking into account the replicated data structure.

Model specification

Suppose the cumulative mortality is measured over D consecutive days. For replicate k of isolate

i, k = 1, . . . , K and i = 1, . . . , I, we denote nik the initial number of insects. Let Yjik denotes the

number of dead insects on day j, j = 1, . . . , D and YD+1ik = nik −∑D
j=1 Yjik the number of insects
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still alive on day D. The probability of an insect dying on day j for isolate i and replicate k is denoted

by πjik. For each replicate, we treat the counts in the D + 1 categories, Yik = (Y1ik, . . . , YD+1ik), as

multinomial with probabilities (π1ik, . . . , πD+1ik) where
∑D+1

j=1
πjik = 1.

Consider now wjik the conditional probability that an insect dies on day j given that it has survived

up to this day for isolate i and replicate k. This conditional probability is defined by

wjik =
πjik

∑D+1

j′=j πj′ik

.

Let b(n; y; w) denote the binomial probability of obtaining y successes out of n trials with probability

w for each trial. The multinomial probability of p(y1ik, . . . , yD+1ik) can be easily expressed in the form

b(nik; y1ik; w1ik) × b(nik − y1ik; y2ik; w2ik) × . . . × b(nik − y1ik − ... − yD−1ik; yDik; wDik).

Thus, the multinomial model can be expressed as a succession of hierarchical binomial models. The

continuation-ratio logits are then defined as

ηjik = logit(wjik) = log
( wjik

1 − wjik

)

= log

(

πjik

πj+1ik + . . . + πD+1ik

)

,

and are ordinary logits of the conditional probabilities wjik.

Clearly, a main advantage of the continuation-ratio model is that it can be fitted using methods for

binomial logit models merely by a rearrangement of the data. Thus, to fit the different logit models,

we require a derived data structure as follows in order to relate the different models.

Rearrangement of the data for replicate k of isolate i

Day No. at risk No. of deaths Proba. of death

1 nik y1ik π1ik

2 nik − y1ik y2ik w2ik = π2ik

1−π1ik

3 nik − y1ik − y2ik y3ik w3ik = π3ik

1−π1ik−π2ik

...

D nik − y1ik − . . . − yD−1ik yDik wDik = πDik

1−
∑D−1

j′=1
πj′ik

The linear predictor ηjik may contains isolate specific factors and covariates in order to model the

time dependency. In this work, we consider isolate and time specific linear effects. In addition, the

variability observed among the replicates for some isolates leads us to introduce an additive random

effect into the linear predictor.

For j = 1, . . . , D, i = 1, . . . , I and k = 1, . . . , K, we first consider Model I defined by the linear

predictor

Model I: ηjik = αi + βj + σξik,

where αi is the isolate effect of isolate i, βj the time effect of day j, ξik ∼ N (0, 1) and the ξik’s are

assumed independent.
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Secondly, we consider a second model in which we add a time trend to the previous linear predictor

leading to Model II defined by

Model II: ηjik = αi + βj + γitj + σξik,

where αi is the baseline effect of isolate i, βj is the baseline time effect of day j, tj = j is a quantitative

variable for day j and γi is the time effect on isolate i.

A third model is also considered. This model has an isolate specific linear time effect defined by the

following linear predictor:

Model III: ηjik = αi + γitj + σξik.

Model III imposes more structure on the linear predictor than Model II. By omitting the coefficient

βj , it implies a more specific form for the responses over time.

Finally, two additional models will be considered in this paper and compared to the three models

defined above. In order to get anywhere near reproducing the general overall pattern, we add a

quadratic term in time to the two previous linear predictors. Note that all coefficients αi, βj , γi and

δi, i = 1, . . . , I and j = 1, . . . , D, are assumed to be constant over replicates. These models are random

intercept models in which the introduction of an additive random effect allows a random location shift

for each replicate of each isolate. In this work, we consider a logit link leading to random effects

continuation-ratio logit models. Others link functions can be used. Another common choice is the

complementary log-log link yielding the so-called proportional hazards model.

Parameter estimation

In this section, parameter estimation for the random effects continuation-ratio models defined previ-

ously is considered based on the EM algorithm. This algorithm is a powerful computational technique

for maximizing likelihoods including unobserved variables. However, as with the binary model, the

non-conjugate normal distribution for ξ means that the marginal likelihood cannot be worked out an-

alytically. Indeed, assuming that ϕ(.) denotes the normal density function, the likelihood of replicate

k of isolate i is given by

Lik(θ, σ) =

∫

+∞

−∞

D
∏

j=1

f(yjik|θ, σ, ξik) ϕ(ξik; 0, 1) dξik

=

∫

+∞

−∞

D
∏

j=1

w
yjik

jik (1 − wjik)
nik−

∑j−1

j′=1
yj′ik ϕ(ξik; 0, 1) dξik

=

∫

+∞

−∞

D
∏

j=1

[

exp(ηjik)

1 + exp(ηjik)

]yjik

×
[

1

1 + exp(ηjik)

]nik−

∑j−1

j′=1
yj′ik

ϕ(ξik; 0, 1) dξik,

Clearly, this likelihood function has no closed form and has to be evaluated numerically before being

maximized as a function of the fixed effect parameters θ and the random effect parameter σ. In this

section, we consider two integration methods for approximating the likelihood which will be then

combined with an EM algorithm for the maximization step.

First, we consider classical Gaussian quadrature to evaluate numerically this likelihood integral. The

dimension of the integral determining the likelihood function depends on the random effect structure.
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When the random effects are assumed normally distributed and the dimension is small, as in the in-

tegral defined above, Gaussian-Hermite quadrature methods can approximate the likelihood function.

Thus, the likelihood is approximated by

Lik(θ, σ) ≈
R
∑

r=1

πr

{

D
∏

j=1

f(yjik|θ, σ, zr)

}

,

with weights πr and quadrature points zr that are tabulated. Note that the approximation improves

as the number R of quadrature points increases. However, in practice, a large number of quadrature

points is often required to approximate correctly the likelihood. Moreover, the approximation can be

poor for large random effects variances or can fail for small cluster sizes (Lesaffre and Spiessens, 2001).

To solve these problems associated with ordinary quadrature, we then consider adaptive Gaussian

quadrature methods. An adaptive version of the Gauss-Hermite quadrature shifts and scales the

quadrature points to place them under the peak of integrand. Note that after normalization with

respect to ξik, the integrand is the posterior density of ξik given the response and can be approximated

for large sample sizes by a normal density ϕ(ξik; µik, τ
2
ik) with mean µik and variance τ2

ik. In this

version, the normal density ϕ(ξik; µik, τ
2
ik) approximating the posterior density is treated as the weight

function. The integral is now written as

Lik(θ, σ) =

∫

+∞

−∞

ϕ(ξik; µik, τ
2
ik)

∏D
j=1 f(yjik|θ, σ, ξik) ϕ(ξik; 0, 1)

ϕ(ξik; µik, τ
2
ik)

dξik,

and applying the standard quadrature rules, the integral is now approximated by

Lik(θ, σ) ≈
R
∑

r=1

πik r

{

D
∏

j=1

f(yjik|θ, σ, zik r)

}

.

Hence, the adaptive quadrature points are given by zik r = τikzr + µik with corresponding weights

πik r =
√

2πτik exp( z2
r

2
)ϕ(zik r)πr.

Essentially, the posterior density is here approximated by a normal density with the same mean

and variance. However, the posterior mean and variance required in this approach are not known

and have to be computed. As in Rabe-Hesketh and al. (2005), we obtain these posterior moments

using adaptive quadrature leading to an iterative integration. Finally, once the marginal likelihood

is evaluated numerically for given parameter values, it has to be maximised with respect to θ and

σ. Several methods for maximizing the likelihood can be considered and combined with the two

integration methods presented above. Rabe-Hesketh et al. (2005) use for instance a Newton-Raphson

algorithm where the Hessian matrix is obtained by numerical differentiation. In this paper, we consider

an EM-algorithm which is easy to implement compared to other optimization methods.

Results

The different models presented previously are fitted to the data and compared. More precisely, the

models are fitted using ordinary Gaussian quadrature with 3, 5, 10, 20, 40 and 60 quadrature points

and adaptive Gaussian quadrature using 3, 5 and 10 quadrature points. For each of these models, we

also fit the associated fixed model. For simplicity, we only consider a subset of 30 isolates. Obviously,

results for all 142 isolates can be obtained in the same way.

The results obtained by adaptive Gaussian quadrature are the same from using 10 quadrature points.

For as few as 3 quadrature points, only very small differences can be observed. On the other hand, the

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS008) p.6178



results, in particular the variance estimates, change considerably using ordinary Gaussian quadrature.

Clearly, we need to increase the number of quadrature points to 40 for ordinary quadrature in order

to get similar results. Therefore, it is clear that we may be able to achieve good accurary with a

smaller number of quadrature points using adaptive Gaussian quadrature instead of ordinary Gaussian

quadrature for the different models. Note that simple GLMs were fitted first to the toxicological

data. Introducing a random effect into the linear predictors of these models improved these results

dramatically. Thus, the large variability in the data has been captured by these random effects models.

For each isolate, we also determine the fitted replicate-specific evolutions and the marginal average

evolution implied by the different models. The posterior quantities of interest are the random effects

and the corresponding model random linear predictors. One nice feature of using numerical integration

via the EM-algorithm is that we can easily calculate these quantities from the estimated posterior

distribution of the random effects. For example, using ordinary Gaussian quadrature methods, the

posterior distribution of ξik is provided by

f(zr|yik) =
πr

∏D
j=1 f(yjik|θ, σ, zr)

∑R
l=1 πl

∏D
j=1 f(yjik|θ, σ, zl)

, r = 1, . . . , R.

= pikr

These posterior probabilities pikr that the unobserved ξik takes the value zr correspond to the weights

at the final iteration of the EM-algorithm and they provide the posterior distribution of the ξik in the

empirical Bayes sense by replacing the unknown parameters by their ML estimates. In Model II, for

instance, the linear predictors are defined as

log (
wjik

1 − wjik

)|ξik = ηjik = αi + βj + γitj + σξik,

and the corresponding means as wjik =
exp(ηjik)

1 + exp(ηjik)
. In this case, the empirical Bayes predictions

are calculated by:

p̂ik r =
πr

∏D
j=1 f(yjik|θ̂, σ̂, zr)

∑R
l=1 πl

∏D
j=1 f(yjik|θ̂, σ̂, zl)

,

ξ̃ik =
R
∑

r=1

p̂ikr zr,

η̂jik =
R
∑

r=1

p̂ikr η̂jikr with η̂jikr = α̂i + β̂j + γ̂itj + σ̂zr,

ŵjik =
exp(η̂jik)

1 + exp(η̂jik)
.

Note that a similar approach is used when using adaptive Gaussian quadrature. Finally, the fitted

probabilities of real interest π̂jik are directly obtained from the empirical Bayes predictions ŵjik.

Concerning the marginal average evolution, note that it can be derived from averaging the conditional

means over the random effects ξik. Again, this can be done using numerical integration methods

or based on numerical averaging by sampling a large number of random effects from their fitted

distribution (Molenberghs and Verbeke, 2005). In this work, we derive the marginal average evolution

based on the second method by sampling 1000 random effects ξik from their fitted distribution. Note

that the approach which consists of plotting the profile for an “average” replicate i.e. a replicate with

random intercept ξik = 0 rather than the marginal average results in different fitted average trends.
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Finally, one of the aims of this study is to determine the effective isolates. In this context, one quantity

usually used is the lethal time LTp which is the time required to obtain p % mortality. This quantity

can be easily used to summarize and to rank the different isolate effectiveness. More precisely, for

each isolate, we plot the marginal median lethal time against the standard deviation of the posterior

estimates of the random effect to account for variability among the replicates. Clearly, effective isolates

are those with both low lethal time and low replicate variability.

Discussion

In this paper, we have proposed to use random effects continuation-ratio models to model discrete

survival times by considering them as ordered multicategorical data. We have seen that this particular

model can be easily fitted using the methods available for binary response data by a rearrangement

of the data. The use of this specific model also makes possible the generalization of these approaches

to replicate measures. In this work, the random effects are assumed to be sampled from a normal

distribution. This assumption reflects the prior believe that the random effects are drawn from one

homogeneous population. However, the results obtained using ordinary Gaussian quadrature show

that the disparity does not decrease monotonically as we increase the number of quadrature points.

In other words, bad approximations can give better fits. This behaviour observed for instance in

Lesaffre and Spiessens (2001) suggests that the normality assumption is not really convincing in this

case. To relax this assumption, we are now considering the use of heterogeneity models as defined by

Molenberghs and Verbeke (2005). This extension consists of replacing the normality assumption by a

mixture of normal distributions. This model which reflects the prior believe of presence of unobserved

heterogeneity among the replicates is also used for classification purposes.
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ABSTRACT

Discrete survival times can be considered as ordered multicategorical data. In this work, we consider

a continuation-ratio model, which is particularly appropriate when the ordered categories represent

a progression through different stages, such as survival through various times. In a clustered data

context, we incorporate random effects into the linear predictor of the model to account for uncontrolled

experimental variation. Assuming a normal distribution for the random effects, we use ordinary and

adaptive Gaussian quadrature in an EM-algorithm to estimate the model parameters. This approach

is used to analyse grouped toxicological data from a biological control essay where different isolates of

a fungus are used as a microbial control for termites.
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