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Introduction

We propose a simple and fast approach to testing polynomial regression versus a general non-

parametric alternative modeled by penalized splines. For the construction of the test we exploit novel

results on simultaneous confidence bands using the approximation to the tail probability of maxima

of Gaussian processes by the volume-of-tube formula (see Krivobokova et al., 2010, and Sun, 1993).

Besides allowing for the incorporation of smooth curves that enter an additive model, are spatially

heterogeneous (see Krivobokova et al., 2008) and are estimated from heteroscedastic data, the test

can also be used for investigating the statistical significance of certain features in a curve, such as

dips and bumps. Further advantages include very good small sample properties and the analytical

availability, i.e. no computationally intensive procedures such as bootstrapping (as in Härdle et al.

(2004), for example) are necessary and results are obtained virtually instantly. In particular, this

test is preferable to F-type tests (for example as used in R package mgcv, Wood, 2006), which tend

to underestimate p-values when smoothing parameters are estimated. In simulations we show that

the proposed test performs competitively compared to restricted likelihood ratio tests (RLRT, see

Crainiceanu et al., 2005) and thus provides a convenient alternative. The method is implemented in

the R package AdaptFitOS, making it readily available for practitioners. For the related simultaneous

confidence bands, see Wiesenfarth et al. (2010).

Estimation with Penalized Splines

We consider the model

Yi = β0 +
d∑

j=1

fj(xji) + εi, εi ∼ N{0, σ2(x̃i)}, i = 1, . . . , n,

where β0 is an intercept and covariates are assumed to be scaled to the unit interval, i.e. xj1, . . . , xjn ∈
[0, 1], j = 1, . . . , d without loss of generality. Further, we allow for heteroscedasticity by allowing the

residual variance to vary with one of the covariates or some linear combination of them denoted by x̃.

To estimate unknown smooth functions fj with penalized splines, we represent fj(x) = (In −
1n1tn)Bj(x)βj = B̃jβj with Bj(x) a B-spline basis function of degree p based on a large number of kj
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knots τj = {τj,1 < . . . < τj,kj} such that the approximation bias will be small enough. Identifiability

is ensured by using the centered basis matrices B̃j .

The degree of smoothness of each function fj(xj) is allowed to vary with xj with a small smooth-

ing parameter for values of xj where the function is wiggly and large smoothing parameter where it

is smooth. A procedure that allows the function to be spatially inhomogeneous in such a way is said

to be locally adaptive. To estimate such complex functions we employ the mixed models represen-

tation of penalized splines. To do so, we decompose each B̃jβj = B̃j(F
j
b bj + F j

uuj) = Xjbj + Zjuj
in such a way that (F j

u)tF j
b = (F j

b )tDjF
j
b = 0 and (F j

u)TDjF
j
u = Ikj+p+1−q, where Dj is such that∫ 1

0 [{B̃j(x)βj}(q)]2dx = βtjDjβj . Now assuming that ujs ∼ N{0, σ2uj
(τj,s)}, s = 1, . . . , kj and that

the variance processes σ2uj
(τj) and σ2(x̃) are smooth functions leads to a linear mixed model. More

precisely, we define a hierarchical mixed model

Y = β0 +
d∑

j=1

(Xjbj + Zjuj) + ε, ε|v ∼ N(0, σ2Σε), uj |cj ∼ N(0, Σuj ),

Σε = diag{exp(Xvγ + Zvv)}, v ∼ N(0, σ2vIkv),

Σuj = diag{exp(Xwjδ + Zwjwj)}, wj ∼ N(0, σ2wj
Ikwj

),

where Xv, Zv, Xwj and Zwj are obtained by decomposing the spline bases in the same fashion as

above, but based on smaller numbers of knots. All parameters of this model can be estimated from

the corresponding (restricted) likelihood including locally adaptive smoothing parameters λj(τj) =

σ2/σ2uj
(τj) penalizing the integrated squared q-th derivative of the spline function.

To avoid numerically intensive computations, we follow Krivobokova et al. (2008) who suggested

to use the Laplace approximation of the likelihood in the case of locally adaptive smoothing with

homoscedastic errors which can analogously be extended to the heteroscedastic case.

Goodness-of-Fit Test

The difficulties when conducting inference in nonparametric regression (testing and simultane-

ous confidence bands) are caused by the fact that all nonparametric estimators are biased and the

smoothing parameters are estimated from the data, introducing extra variability. Krivobokova et al.

(2010) discussed simultaneous confidence bands and showed that using the mixed models represen-

tation of penalized splines in combination with the volume-of-tube formula the bias is automatically

corrected for and the variability due to estimated smoothing parameter is negligible for sufficiently

large n. In this paper, we make use of these results and construct a goodness-of-fit test.

To do so, we define the test problem by the hypotheses H0 : fj(xj) = f0j (xj) and H1 : fj(xj) =

f0j (xj) + gj(xj) ∀xj ∈ [0, 1] with f0j (xj) a polynomial of degree q − 1 and gj(xj) an unspecified

deviation. Further, we choose the B-spline basis such that f0j (xj) = Xjbj . Then, testing for polynomial

regression versus a general nonparametric alternative is equivalent to testing H0 : fj(xj) = Xjbj
versus H1 : fj(xj) = Xjbj + Zjuj or equivalently H0 : Zjuj = 0. The idea is to exploit the

orthogonality of Xjbj and Zjuj and to construct a simultaneous confidence band around the deviation

from the parametric fit gj(xj) = Zjuj . Then, the test procedure corresponds to checking whether the

confidence band uniformly encloses the zero line coinciding with the test statistic

Tj = max
x∈[0,1]

(
|Zûj |/

√
Var{Zûj}

)
where Var{Zûj} is the variance of ĝj(xj) with respect to the conditional distribution of Y treating

uj as fixed. That is, Var{Zûj} = σ2diag(Sj(x)ΣεSj(x)t) where Sj(x) = Zj(x){Zt
jΣ
−1
ε (I − S−j)Zj +

σ2Σ−1uj
}−1Zt

j(I − S−j)Σ−1ε with S−j = C−j(C
t
−jΣ

−1
ε C−j + Λ−j)

−1Ct
−jΣ

−1
ε where
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C−j = [X1, Z1, X2, Z2, . . . , Xj−1, Zj−1, Xj , Xj+1, Zj+1, . . . , Xd, Zd] and

Λ−j = blockdiag(Λ1,Λ2, . . . ,Λj−1,diag(0q),Λj+1, . . . ,Λd) with Λj = σ2blockdiag(0q,Σ
−1
uj

).

Rejection of H0 takes place if Tj > cj . To obtain the critical value cj we consider with respect

to the marginal distribution of Y the zero mean Gaussian process

Gj(x) =
Zj(x)(ûj − uj)√

Zj(x)Cov(ûj − uj)Zj(x)t
∼ N (0, 1),

where Cov(ûj − uj) = {Zt
jΣ
−1
ε (In − S−j)Zj + σ2Σ−1uj

}−1 and

Cov{Gj(x1), Gj(x2)} =

(
`j(x1)

‖`j(x1)‖

)t(
`j(x2)

‖`j(x2)‖

)
=: ηtj(x1)ηj(x2),

with `j(x) = {Zt
jΣ
−1
ε (I − S−j)Zj + σ2Σ−1uj

}−1/2Zt
j(x). Since Gj(x) is a zero mean Gaussian process,

we can apply the volume-of-tube formula (Hotelling, 1939) to obtain cj from

α = P

(
sup

x∈[0,1]
|Gj(x)| ≥ cj

)
=
κj
π

exp
(
−c2j/2

)
+ 2{1− Φ(cj)}+ o

{
exp(−c2j/2)

}
,

with κj =
∫ 1
0 ‖

d
dxηj(x)‖dx as the length of the mixed model manifold and Φ(·) the distribution function

of a standard normal distribution.

Note that p-values can be obtained easily by calculating the tail probabilities by replacing cj
by a given Tj in the volume-of-tube formula. By exploiting the decomposition of the B-spline basis,

improved power is obtained compared to the test strategy proposed in Claeskens & Van Keilegom

(2003), for example, who build their proposed test on the simultaneous confidence band around fj
itself with corresponding hypotheses H0 : fj(xj) = f0j (xj) + gj(xj) versus H1 : fj(xj) 6= f0j (xj) +

gj(xj) ∀xj ∈ [0, 1] and rely on local polynomials for estimation and bootstrapping to obtain the

critical value. That is, their test procedure corresponds to investigating a simultaneous confidence

band around fj(xj) and not around gj(xj).

In the following section, we compare the performance of the proposed test with RLR tests using

the simulation based approximation to the RLRT distribution implemented in the R package RLRsim

(Scheipl, 2010).

Tests for feature significance can be obtained by choosing q = 2 and constructing the test with

respect to the first derivative of the function under consideration (see Ruppert et al., 2003, Chapter

6.8) restricting to the interval of interest.

Simulation Study

We consider additive models with i.i.d Gaussian errors

Y = µj(x1, x2, x3) + ε, ε ∼ N (0, σ2I), j = 1, 2, 3

with

µ1(x1, x2, x3) = ϕ1f1(x1) + x2(1− x2) + f2(x2) + x3 + f32(x3)

µ2(x1, x2, x3) = f1(x1) + x2(1− x2) + ϕ2f2(x2) + x3 + f32(x3)

µ3(x1, x2, x3) = f1(x1) + x2(1− x2) + f2(x2) + x3 + ϕ3f32(x3)

with ϕj ∈ [0; 0.6], j = 1, 2, 3 corresponding to the separation distances between the null and the

alternative. We test for no effect, second degree polynomial and for linearity of the components

f∗1 (x1) = ϕ1f1(x1), f
∗
2 (x2) = x2(1− x2) + ϕ2f2(x2) and f∗3 (x3) = x3 + ϕ3f32(x3), respectively. To do

so, B-spline bases with (p = 1, q = 1), (p = 5, q = 3) and (p = 3, q = 2), respectively, are used.
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(a) f∗1 (b) f∗2 (c) f∗3

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

re
je

ct
io

n 
ra

te
s

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

re
je

ct
io

n 
ra

te
s

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

re
je

ct
io

n 
ra

te
s

Figure 1: Empirical power curves of the proposed test (solid lines) and RLR test

(dashed lines)

Further, σ = 0.33, n = 300, kj = 40, j = 1, 2, 3 and kw3 = 5 are chosen. Three Monte

Carlo simulations with 1000 replications each were carried out. Results for n = 600 led to the same

conclusions. As shown in Figure 1, the power curves of the proposed test and the RLR test are

virtually identical.
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