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Introduction

A recurrent stochastic process tends to visit “everywhere” as time progresses. Often there is
interest in the time it takes the process to reach a taboo set. The probability that the process will
not enter the taboo set within ¢ time units tends to 0 as ¢ — co. Nonetheless, there may be interest
in the conditional distribution of the process at time ¢, conditional on the process not having entered
the taboo set by time t. If this distribution has a limit as ¢ — oo, the limit is referred to as a
quasi-stationary distribution.

In the context of first-exit times of Markov processes, quasi-stationary distributions come up
naturally: an evaluation of the distribution of the state of a process upon its first entrance into a
taboo set (if it took a long time to get there) can be obtained by conditioning on the state of the
process before crossing (which approximately is the quasi-stationary distribution). These are of special
interest in certain applications in the case of a nonnegative Markov process, where the first time that
the process exceeds a fixed level A signals that some action is to be taken. The taboo set is (A, o0),
and the quasi-stationary distribution Q(x) is the distribution of the state of the process if a long
time has passed and yet no crossover of A has occurred.

Various topics pertaining to quasi-stationary distributions are existence, calculation, simulation,
etc. In the case of a Markov chain with a finite state space, a quasi-stationary distribution is a limit of
high powers of a probability transition matrix, but in richer spaces the calculation of a quasi-stationary
distribution often is not expressable analytically (see Tartakovsky, Pollak, and Polunchenko, 2011), and
can only be approximated, perhaps by simulation. Even existence of a quasi-stationary distribution
can be a vexing problem. For an extensive bibliography see Pollett (2008).

In this paper, we are interested in the dependence of certain characteristics of quasi-stationary
distributions on the crossing threshold A when the process is nonnegative Markov. When an analytic
expression of the quasi-stationary distribution is unavailable, this can be difficult. An example of such
a characteristic appears in Pollak and Siegmund (1986), where it is shown, under certain conditions,
that if a stationary distribution Q exists, then Q4 — Q as A — .

Here, we study a monotonicity property of the quasi-stationary distribution Q4 and apply it
to the behavior of the expected time of the first exceedance of A by a Markov process started at
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Q4, as a function of A. Specifically, we provide conditions under which Q4 is nonincreasing and the
corresponding stopping time T g“ is stochastically nondecreasing in A. While this is of considerable
interest on its own merit, our interest stems from certain aspects in changepoint detection theory
where it is of importance to establish monotonicity properties of the mean time to false alarm (as a
function of the detection threshold) of detection schemes that start off at a random point that has a
quasi-stationary distribution.

Results and discussion

Let {My}n>0 be an irreducible homogeneous Markov process taking values in .# C [0, c0) with
transition probabilities p(t,z) = P(My41 < z|M,, =t). Define Ty =inf{n > 0: M, > A}.
Assume that:

(C1) The quasi-stationary distribution Q4 (x) = lim,,—.o P(M,, < z|T'4 > n) exists forall A > Ay > 0
(for some Ay < o0) and satisfies Q4(0) = 0.

(C2) p(s,x) is nonincreasing in s for all fixed = € .Z.

(C3) p(ts,tz) is nondecreasing in ¢ for all fixed s,z € .

(C4) p(s,x)/p(s,A) is nonincreasing in s for all fixed z € 4,z < A.

(C5) p(ts,tx)/p(ts,tA) is nondecreasing in t for all fixed s, x, € A4,z < A.
Consider the case where My has distribution Q4 and define

Tg“‘ =inf{n >1: M, > A; My ~ Qa}.

Theorem. Let the conditions (C1)—(C5) be satisfied. Then
(i) My is stochastically nondecreasing in A; i.e., Qa,(x) = Qu,(x) for all x if Ay < Asg;
(i) Qua(yx) = Qa(x) for ally > 1 and all fized v € M, x < A;

st st
i) 794 < A for all y > 1, where = stands for “stochastically smaller than (or equal to)”. In
A yA
particular, it follows that E[Tg“] < E[Tij’A] forally > 1.

Although the conditions (C1)—(C5) are restrictive, they are satisfied in a number of interesting
cases, some of which are provided below.
Suppose { M, }n>0 obeys a recursion of the form

Mn+1 :SO(MTL)'ATH-I’ nzoala"' )
where
(D1) {Ai}i>1 are iid positive and continuous random variables;

(D2) the distribution function F' of A; satisfies

increases in ¢, t > 0 for fixed x € A, x < A;

(D3) ¢(t) is continuous, positive and nondecreasing in ¢;
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(D4) t/p(t) is nondecreasing in t;
(D5) ¢ and F' are such that P( lim M, =0) = 0.

n—oo

In this quite general example,

p(s,z)=F (@&) .

Under these conditions, Theorem II1.10.1 of Harris (1963) can be applied to obtain existence of a
quasi-stationary distribution. The conditions (D1)-(D5) are easily seen to imply the conditions (C1)-
(Ch).

Condition (D2) is equivalent to the log of the cdf of log(A1) being concave. This is satisfied,
for example, if log(A1) = aY + b where a,b are real numbers and Y has a normal or an exponential
distribution.

Many Markov processes fit this model. We now give several examples.

Example 1: EWMA (Exponentially weighted moving average) processes. Let
Yioi1=aY, +&u41, n =0,

where 0 < a < 1and &, i = 1,2,... are iid continuous random variables. Define M,, = e¥», A, = e".
Here p(t) = t°.

Example 2: Reflected random walk. Let
Yo=0, Y=o+ Zn1)", n=0,1,...,

where {Z;} are iid, P(Z; < 0) > 0. On the positive half plane the trajectory of the reflected random
walk {Y,},,>0 is identical to the trajectory of the Markov process {Y,¥},>0 given by the recursion

Yy =0, Y, = )"+2Zy1, n=01,...

Therefore, if log A > 0 one may operate with Y,* instead of Y,, and all conclusions will be the same.
Define M,, = e¥» and A; = €%, so that

M, +1 = max(My, 1)Apt1, n>=0.

Here ¢(t) = max(1,t). This process describes certain queuing systems as well as the Cusum change-
point detection procedure. In the latter case, Z; = log[f1(X;)/fo(X;)] is a log-likelihood ratio, where
the observations {X;};> are iid with density fy, and the goal is to detect an abrupt change from
density fo to density fi.

Example 3: Shiryaev-Roberts type Markov processes. Let a > 0 and ¢(t) = t 4 a, so that M, 11 =
(M, +a)Ap11. Whena =1 and A1 = f1(Xnt1)/fo(Xny1) is a likelihood ratio, where X;, fo and fi
are as in the previous example, { M, },>0 is a sequence of Shiryaev—Roberts statistics for detecting a
change in distribution. The standard Shiryaev—Roberts procedure calls for setting My = 0, specifying
a threshold A and declaring at T4 = inf{n > 1 : M,, > A} that a change took place. A procedure
Tg“ that starts at a random point My ~ Q4 has certain asymptotic optimality properties (cf. Pollak,
1985).
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ABSTRACT

Let {Mpy}n>0 be a nonnegative homogeneous Markov process and let

Qa(z) = lim P(M,, <z|My< A, M; <A,....M, <A), A>0

n—oo

be the corresponding quasi-stationary distribution. Suppose My has distribution Q4 and define Tg“ =
inf{n > 1: M, > A}, the first time when M, exceeds A. We provide sufficient conditions for Qa(z)
to be nonincreasing in A (for fized x) and for Tg“‘ to be stochastically nondecreasing in A.



