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Abstract 

Many models in finance are often based on the assumption that the random variables follow a Gaussian 
distribution. It is now well known that empirical data have frequently occurring extreme values and cannot 
be modeled with the Gaussian distribution. The stable distributions, a class of probability distributions that 
allow skewness and heavy tails, have received great interest in the last decade because of their success in 
modeling financial data that depart from the Gaussian distribution. This study examines the statistical 
distributions of intra-daily TRY/USD foreign exchange changes. The volatility of the return series are 
calculated using the Stable GARCH models. It is found that the GARCH model with stable innovations fits 
returns better than the Normal distribution. 
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1. Introduction 

Modern finance relies heavily on the assumption that the random variables under investigation follow 
a Normal distribution (Rachev and Mittnik, 2000). However, finance data often depart from the Normal 
model, in that their marginal distributions are heavy-tailed. The use of stable distributions to finance has been 
introduced via the works of Mandelbrot (1963) and Fama (1965). The peaked and heavy-tailed nature of the 
return distribution led the authors to reject the standard hypothesis of normally distributed returns in favor of 
the stable distribution. Since then, the stable distribution has been used to model both the unconditional and 
conditional return distributions (Marinelli et.al, 2001). 

While different heavy-tailed distributions such as GED or Student’s t can be used for modeling 
financial variables, stable distributions are preferred due to the generalized Central Limit Theorem. 
According to this theorem, regardless of the existence of the variance, the limiting distribution of a sum of 
independent and identically distributed random variables is stable (Borak, Härdle and Weron, 2005). 
Additionally, stable distributions are a rich class of probability distributions that allow skewness and heavy 
tails. Thus, they are widely used in modeling heavy tailed data (Zolotarev, 1986).  

The conditional distribution of assets returns in GARCH models is assumed to be Normal. However, 
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this model specification is not proper for many financial time series because of the leptokurtic behavior of 
the data. Therefore, the distributions such as the Student’s t distribution, GED, and the Laplace distribution 
have been suggested to be the distributional models for innovations. Besides these models, GARCH models 
with stable Paretian innovations in financial modeling has been recently used in the literature because of 
allowing skewness and leptokurtosis of financial returns (Curto et al., 2009).  

This paper examines the statistical properties of the intraday returns and the usage of stable GARCH 
models for modeling high-frequency data. It also shows that this model is more suitable than Normal models.  

The remainder is organized as follows. Next section discusses GARCH model with stable innovations. 
Section 3 explains the statistical properties of returns and presents the initial findings. It also discusses the 
estimation results and compares the goodness-of-fit of the two conditional distributions. Section 4 
summarizes the concluding remarks.    

 
2. Stable distributions: 

Stable distributions do not have an analytic closed form but can be expressed by their characteristic 
function, 
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A stable distribution has four parameters; α, β, δ and γ (γ=cα). α is called characteristic exponent and 
interpreted as a shape parameter. The Normal distribution is stable with α=2 and is the only stable 
distribution which second and higher absolute moments exist. When α<2, absolute moments of order equal 
to and greater than α do not exist while those of order less than α do. The distribution becomes heavy tailed. 
The tail thickness increases as α decreases. δ and c are the location and scale parameters respectively. When 
β (skewness parameter) is positive (negative), the distribution is skewed to the right (left). If β is zero, the 
distribution becomes symmetric about δ (location parameter). As α approaches to 2, the distribution 
approaches to a Normal distribution regardless of β (Fama and Roll, 1968).  

Following Curto et al. (2009), let the time series yt be given as ARMA(p,q) process: 
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We express the conditional standard equation of a Stable GARCH ( GARCH(r;s)) as2:  
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where ut = σtεt  and εt 
iid
∼  Sα,β(0,1). Sα,β(0,1) denotes the standard asymmetric Stable Paretian distribution 
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with location parameter (δ =0), and unit scale parameter (c=1)3. The probability density and the likelihood 
functions of the Stable distribution GARCH are nontrivial, and a Fast Fourier Transforms (FFT) procedure is 
employed for the maximum likelihood estimation (MLE) algorithm. We follow the MLE procedure of 
conditional heteroskedasticity models with Stable distributions presented by Mittnik et al. (1999)4. 

To examine the intraday returns, assume the mean equation as follows:  

yt = µ+ ut                                   (4) 

where yt is the returns and ut =σtεt, εt 

iid
∼ Sα,β(0,1). 

 
We also impose certain stability conditions to estimate the Stable GARCH models (Rachev and 

Mittnik, 2000). 
 

3. Empirical Results: 
The data consist of the TRY/USD exchange rate realized at Turkish Interbank Foreign Exchange 

Market at 10:30, 11:30, 12:30, 13:30, 14:30 and 15:30 starting from April 1st 2002 until May 13th 2010. At 
the indicated hours, the TRY/USD rate is the average value of the averages of the buying and selling rates as 
quoted by banks in the Interbank Foreign Exchange Market for 1 USD. The holding periods are one-hour, 
five-hour, close to open (19-hour), open to open (24-hour), close to close (24-hour) and average to average 
(24-hour) changes. The logarithmic returns are calculated for each holding period and the summary statistics 
related to each period can be seen in Table 1. 

(Table 1) 
The values of kurtoses are above the normal value of 3.0 for every holding period that points out the 

heavy-tailed behavior of high-frequency foreign exchange changes. According to Jarque-Bera statistics, all 
variables indicate non-normal distributions.  

(Figure 1) 
According to Figure 1, it can be said that stable distribution fits better than Normal distribution for 

both series.  
(Table 2)  

Table 2 presents Normal and Stable GARCH as benchmark models for different holding periods. The 
results show that GARCH parameters are significant in both models for each holding period. The Stable 
GARCH models indicate that the shape parameters are significant and both are less than 2 based on t-tests 
indicating heavy tailed pattern, and the skewness parameters are positive and significant. Log likelihood, 
AIC and SBC are the criterions that are used to decide on which model will be the final one. The Stable 
GARCH models show significantly higher log likelihood values compared to the Normal GARCH models 
and yield much smaller values of AIC and SBC. They are preferable models based on the goodness of fits. 
These results are no surprise since the Stable models take into account the non-normal distribution of the 
time series estimated. 

 
4. Conclusions: 

It is of great importance for those in charge of managing risk to understand how financial asset returns 
are distributed. Empirical evidence has led many practitioners to reject the normality assumption supporting 
various heavy-tailed alternatives and it is now commonly accepted that financial asset returns are, in fact, 
heavy-tailed.  

Stable distributions are the probability distributions that allow skewness and heavy tails. Therefore, 
                                            
3 These assumptions simplify the estimation, but will not alter the properties of the stable distribution. See, for example, Curto et al. 

(2009) and Tavares et al. (2008). 
4 We thank Professor Curto for providing us Matlab codes to estimate the model. 
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they are widely used in modeling heavy tailed data (Zolotarev, 1986). Recent studies show that stable 
distributions have been used for modeling stock returns, foreign exchange rate changes, commodity-price 
movements, and real estate returns (McCulloch, 1997). 

This paper examines the statistical distributions of high frequency (intra-daily) TRY/USD foreign 
exchange changes and the volatility of the return series by employing the Stable GARCH models.  

The return series are gathered for the time period :April 1st 2002-May 13th 2010. The distributions of 
the returns are examined. The empirical results show that the foreign exchange changes do not follow the 
normal distribution and show heavy-tailed behaviors.  

In order to examine the volatility, Normal and Stable GARCH as benchmark models are constructed 
for different holding periods. The results indicate that GARCH parameters are significant in both models for 
each holding period. The goodness of fit supports the use of Stable GARCH over Normal GARCH 
specifications. The Stable GARCH models indicate that the shape parameters are significant and both are 
less than 2 based on t-tests indicating heavy tailed pattern, and the skewness parameters are positive and 
significant. Another important result is that, when the holding period increases the shape and skewness 
parameters increase for both periods.  

On the whole, the estimated parameters suggest that the normality restriction is misleading and, thus, 
imposing the normality may cause a bias for financial modeling. The stable distribution is relatively effective 
in capturing large changes in exchange rate movements, while the normal distribution screens out the outliers. 
 
Table 1: Summary Statistics of Returns 
 

 One-Hour Five-Hour Close to Open   

(19-hour) 

Close to Close   

(24-hour) 

Open to Open   

(24-hour) 

Average to 

Average 

(24-hour) 

# Obs. 10142 2028 2027 2026 2028 2028 

Mean -0.00001 -0.00004 0.00010 0.00006 0.00006 0.00006 

Median -0.00005 -0.00023 -0.00043 -0.00071 -0.00049 -0.00074 

Minimum -0.02494 -0.03732 -0.12560 -0.09516 -0.14528 -0.11932 

Maximum 0.02468 0.03810 0.06760 0.05728 0.07990 0.07043 

Std.Dev. 0.00237 0.00549 0.00881 0.00980 0.01091 0.00961 

Skewness 0.61 0.41 -0.49 0.37 -0.40 -0.04 

Kurtosis 15.43 8.79 28.47 11.09 23.12 18.78 

Jarque-Bera 65961.19* 2885.33* 54858.23* 5563.33* 34258.69* 21052.69* 
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Table 2: Maximum likelihood estimates and goodness-of-fit statistics of GARCH(1,1) for 
different holding periods (standard errors are in parentheses, t-statistics are in square brackets) 
  

Estimates One-Hour Changes Five-Hour Changes 19-Hour Changes 24-Hour Changes 

 Normal Stable Normal 

 

Stable Normal 

 

Stable Normal 

 

Stable 

Intercept 

(µ) 

-0.0000582 

(1.43E-05) 

[-4.08] 

0.0000001 

(1.72E-05) 

[0.01] 

-0.0002260 

(8.36E-05) 

[-2.70] 

0.0000001 

(9.61E-05) 

[0.00] 

-0.0000096 

(1.30E-04) 

[-0.07] 

0.0001517 

(1.38E-04) 

[1.10] 

-0.0002630 

(1.65E-04) 

[-1.59] 

0.0000001 

(1.60E-04) 

[0.00] 

θ0 0.0000001 

(2.32E-09) 

[36.34] 

0.0000264 

(2.86E-06) 

[9.24] 

0.0000011 

(1.05E-07) 

[10.59] 

0.0001123 

(2.62E-05) 

[4.29] 

0.0000029 

(2.78E-07) 

[10.46] 

0.0002664 

(5.00E-05) 

[5.33] 

0.0000024 

(3.71E-07) 

[6.50] 

0.0002685 

(5.13E-05) 

[5.23] 

θ1 0.1103390 

(2.58E-03) 

[42.81] 

0.0681020 

(3.82E-03) 

[17.84] 

0.1650930 

(1.14E-02) 

[14.47] 

0.0879770 

(1.01E-02) 

[8.67] 

0.1878870 

(1.53E-02) 

[12.28] 

0.1233400 

(1.28E-02) 

[9.67] 

0.1493090 

(1.21E-02) 

[12.33] 

0.1003800 

(1.08E-02) 

[9.30] 

φ1 0.8839660 

(2.23E-03) 

[396.30] 

0.8838500 

(6.57E-03) 

[134.60] 

0.8104060 

(1.05E-02) 

[77.06] 

0.8499600 

(1.80E-02) 

[47.15] 

0.7866550 

(1.19E-02) 

[66.29] 

0.7896500 

(2.16E-02) 

[36.62] 

0.8337950 

(1.04E-02) 

[80.19] 

0.8288000 

(1.88E-02) 

[44.17] 

α - 

- 

 

1.600 

(1.77E-02) 

[90.45] 

- 

- 

 

1.705 

(3.79E-02) 

[45.02] 

- 

- 

 

1.778 

(3.39E-02) 

[52.49] 

- 

- 

 

1.803 

(3.42E-02) 

[52.73] 

β - 

- 

 

0.118 

(3.29E-02) 

[3.58] 

- 

- 

 

0.322 

(9.02E-02) 

[3.57] 

- 

- 

 

0.543 

(1.03E-01) 

[5.27] 

- 

- 

 

0.662 

(1.18E-01) 

[5.59] 

Log 

Likelihood 

48874 49984 7950 8069 7108 7223 6809 6868 

AIC -97739 -99967 -15892 -16136 -14207 -14445 -13609 -13734 

SBC -97710 -99969 -15869 -16138 -14185 -14447 -13587 -13736 
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Figure 1: Distribution of Return Series  
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