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Abstract 

Tail dependence copulas provide an efficacious tool to capture tail dependence of a multivariate 
distribution. Two popular copulas, Gumble and Claytron, capture upper and lower tail dependence 
respectively. In this paper, we propose a new bivariate copula, namely the Cot-copula which capture both 
upper and lower tail dependence and these measures coincide with that of Gumbel and Clayton tail 
dependence measures, respectively. The propose copula also has a wider dependence coverage for the 
Kendall's tau (𝜏) than the 12th 
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family of Archimedean Copula of (Nelsen, 2006), which illustrates the 
ability to capture a wider range of dependence structure.   

 
Introduction  

A copula is a function which binds or ‘couples’ an −n  dimensional distribution to its one-
dimensional margins and is itself a continuous distribution function which characterizes the dependence 
structure of the model. This is indeed useful to risk management(Bouyé, Durrleman, Nikeghbali, 
Riboulet, & Roncalli, 2001).  

The statistical analysis of the distribution of individual asset returns frequently finds fat tails, 
skewness, and other non-normal features which leads to underestimation of this dependence measure (see 
for example (Ang & Bekaert, 2002; Ang & Chen, 2002; Bae, Karolyi, & Stulz, 2003; Longin & Solnik, 
2001). This has led many to consider other alternatives and the introduction of copulas as flexible 
methods of multivariate modeling is very timely. 

The Archimedean copulas are an important family of copulas, which have a simple form with 
properties such as associativity and have a variety of dependence structures.  (C. Genest & J. MacKay, 
1986; C. Genest & R. Mackay, 1986; Joe, 1997; Müller & Scarsini, 2005; Nelsen, 2006).  Some important 
applications of the Archimedean copulas can be found in the studies of marketing, finance for example,  
(Coutant, Martineu, Messines, Riboulet, & Roncalli, 2001)  , and rainfall (AghaKouchak, Bárdossy, & 
Habib, 2010).   

In order to characterize the dependence of extreme risk, the concept of tail dependence for bivariate 
distribution functions was introduced by (Joe, 1997). With the exception of 12th family, most 
Archimedean copulas introduced in Table 4.1 of Nelsen (Nelsen, 2006) cannot explain both tail behaviour 
observed on financial markets(Nelsen, 2005) . In order to obtain copulas with bivariate tail dependence 
measures, many authors construct new-copulas as a convex linear combination of two copulas; examples 
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are Joe-Clayton (Joe, 1997), Gumbel-Clayton (Ane & Kharoubi, 2003) and many more. The aim of this 
paper is to introduce a new bivariate Archimedean copula with one-parameter family of generator θC , 
namely Cot-copula, which has bivariate tail dependences, and are comparable to those of the established 
Gumbel and Clayton copulas.  In addition, the proposed copula is able to capture a wider range of 
dependence structure since it has wider dependence coverage for the Kendall’s τ than the 12th

This paper is organized as follows. In Section 2, we provide preliminaries for the Archimedean 
copulas and introduce the Cot-Copula.  Section 3 derives the tail dependence measure and Kendall’s tau 
measure of the proposed copula. This is followed by “Empirical application” sections and “Conclusion” 
which contains some concluding remarks. 

 family of 
Archimedean Copula of (Nelsen, 2006). 

 
Preliminaries: The Copula 

A copula C  is a distribution function of a random vector in 2ℜ , each with a uniform marginal 
distribution, with the following properties as given in Theorem 1.1. 

Theorem 1.1: 2:[0,1] [0,1]C → A function is a copula iff the following properties hold:  
 

i. 1 2( , ) 0C u u =  for 1 0u = or 2 0,u =  
ii. 1 1 2 2( ,1) , ( ,1)C u u C u u= =  for all 1u  and 2u  in the unit interval [0,1], 

iii. ( ) ( )2 2
1 2,1 1 1 , 0i j
i ji j C u u+

= =
− ≥∑ ∑ for all ( )1, 2,,i ju u  in[0,1]  with 1,1 1,2u u< and 2,1 2,2u u< . 

 
Thus, for joint distribution function H with margins 1 1 2 2( ), ( )F X F X  there is a copula C  such that 

equation 1 2 1 1 2 2( , ) ( ( ), ( )).H x x C F X F X= holds. This copula, C , is unique if the marginal distributions are 
continuous.  

 
Cot- Copula 

A bivariate Archimedean copula C can be generated by considering a class Φ  of functions 
: (0,1] [0, )ϕ → ∞  which are continuous, strictly decreasing, convex, and for which ( ) 01 =φ .  This copula 

based on its generator ϕ  can be constructed by following formula: 
[ 1]( , ) ( ( ) ( )), 0 , 1,C u v u v u vϕ ϕ ϕ−= + ≤ ≤                                   (1) 

Where  [ 1]ϕ −  is the pseudo-inverse of continues and strictly decreasing function ϕ  with Dom
[ 1] [0, )ϕ − = ∞  , Rand [ 1] [0,1]ϕ − = and  

1
[ 1] ( ) 0 (0),( )

0 (0) .
t tt

t
ϕ ϕ

ϕ
ϕ

−
−  ≤ ≤= 

≤ ≤ ∞
                                                    (2) 

An important subclass of Φ , as noted by (Nelsen, 2006), consists of those elements of  ϕ   which has two 
continuous derivatives with ( ) 0<′ tϕ   and  ( ) 0>′′ tϕ  for ( )10,∈t .  As an extension to the Archimedean 
family, we propose a new generator defined as: 

( ) cot ( ) 1.
2

t tθ πϕ θ= ≥            (3) 

The condition 1θ ≥  in equation (3) guarantees the following properties of this generator function ( )tϕ : 

(1) co t( ) 0
2

θ πϕ = =
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' 1 21 ( ) ( )cot ( )(1 cot ( )) 0,
2 2 2

if t t tθπ π πθ ϕ θ −≥ → = − + <  

'' 2 2 21 ( ) ( )( cot ( )(1 cot ( ))(( 1) ( 1)cot ( )) 0.
2 2 2 2 2

if t t t tθπ π π π πθ ϕ θ θ θ−≥ → = + − + + >  

In addition,  
0

(0) limcot ( )
2t

tθ πϕ
→

= = ∞  suffices to guarantee that the strict inverse exists, that is: 

1
[ 1] 1 2( ) ( ) co t ( )t t arc tθ θϕ ϕ

π
− −= = .                                                                             (4) 

From (1), the corresponding copula is then defined by the following function.  
12( , ) cot(cot ( ) cot ( )) , 1.

2 2
C u v arc u vθ θ θπ π θ

π
= + ≥                                 (5)

 
 

Dependence Measure 
The role of copula in dependence can be considered in two ways. First, it describes the dependence 

structure as a consequence of Sklar’s theorem.  Secondly, since copula is invariant under strictly 
increasing transformation, this provides a way of studying scale invariant measure of association. Here we 
consider two such measures for the Cot-copula: tail dependence measures which characterize the 
dependences between extreme values which is highly important in finance, and Kendall’s 𝜏1T measure of 
association. For details of these measures, see (Abdi, 2007; Ane & Kharoubi, 2003; Joe, 1997; Kendall, 
1938; D. Li; D. X. Li, 2000; Nelsen, 2006).  

One of the most important statistical properties of copula is dependence coverage, that is, the range 
of dependence structure that a copula can capture. The usefulness of copula family in modeling can often 
depend on its dependence coverage.  Based on Kendall’s 𝜏1T we can show that the proposed Archimedean 
copula has rather wider dependence coverage in compare with 12th

 
 family of Archimedean copula.  

Tail Dependence Measures 
When C is Archimedean with generator φ, the upper tail dependence can be expressed as:  

[ 1]

[ 1]0
1 (2 )2 lim .
1 ( )u t

t
t

ϕλ
ϕ

+

−

−→

−
= −

−
                                                                                        (6) 

Similarly, the lower tail dependence parameter lλ is 
 

[ 1]

[ 1]
(2 )lim .
( )l t

t
t

ϕλ
ϕ

−

→∞ −=                                                                                                               (7) 

For the proposed generator  ( ) cot ( )
2

t tθ πϕ =  , the upper and lower tail dependence ( uλ  and lλ  
respectively) is defined as follows, using (6) and (7):  

11

10
1 (2 )2 lim ( ) 2 2 ,
1 ( )u t

t
t

θϕλ
ϕ

+

−

−→

−
= − = −

−
                                                                                    (8) 

11

1
(2 )lim ( ) 2 .
( )l t

t
t

θϕλ
ϕ

− −

→∞ −= =                                                                                                   (9) 

,
The Gumble family is known to have only upper tail dependence while the Clayton family has only 

lower tail dependence.  Since the tail dependence coincide, the  Cot family has the same upper tail 
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dependence as Gumble with exactly the same bound and the same lower tail dependence as Clayton 
copula in range of [1/2,1]. 

  
Kendall’s τ 
For Archimedean copulas, the Kendall’s τ can be expressed in terms of the generator φ as:  

1 2

2
1 1

, '0 0

( )1 4 1 4 ( ) .
( )X X C
t ddt u u du

dut
ϕτ τ ϕ
ϕ

∞ − = = + = −   ∫ ∫                                                              (10) 

The Kendall’s τ for the generator  ( ) cot ( )
2

t xθ πϕ =  is then given by:   
 

  1 2

1 1
, 20 0 1 2

cot ( )( ) 8 121 4 1 4[ ] 1 ( ).
'( ) ( )cot ( )(1 cot ( ))

2 2 2

X X

tt dt dt
t t t

θ

θ

π
ϕτ

π π πϕ θπθ −
= + = + = −

− +
∫ ∫               (11) 

Thus, the Cot-copula function has a range of dependency between 2
8 1[1 ( ),1]

θπ
− . 

 According to Table 4.1 of (Nelsen, 2006), the 12th families of Archimedean copula also have both upper 
and lower tail dependence. The dependence coverage for 12th

1 1

0 0 ( 1) 2

1( 1)( ) 4 11 4 1 4[ 1 ( ).1 1'( ) 6( )( 1) ( )

t tdt dt
t

t t

θ

θ

ϕτ
ϕ θθ −

−
= + = + = −

− −
∫ ∫

 family is:.  

                                            (12). 

 
According to formula (12) the dependence coverage for 12th

1
4lim (1 ) 0.34

6θ θ−> − =

 family is [0.34, 1] when 

  and 4lim (1 ) 1
6θ θ−>∞ − = .  However, the Cot- family has dependence coverage of 

[0.19, 1] from (11).  Thus, in comparison, the Cot-copula has wider dependence coverage rather than 12th

 

 
family which illustrates the goodness of the proposed copula in capturing a wider dependence structure. 

Empirical application 
Measuring tail dependence on an asymmetric data using the cot- copula is the objective of this 

section. 1000 observations are generated from an asymmetric distribution function with both tail 
dependences. Firstly, marginal distribution functions are independently estimated via nonparametric 
kernel estimation method. After transforming the standardized residuals into uniform margins, three 
copula functions, Gumbel, Clayton and Cot-copula have been fitted. Estimated parameters with standard 
errors based on Kendall’s process, Archimedean goodness of fit method, is listed on Table 2. Cot-Copula 
seems to show a good performance on both tail dependences at one time with only one parameter.  
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Table 1:  tail dependence 
compartion 

 
 
 

lλ
 

uλ
 

Gumble 
(θ≥1) 

0 1

2 2θ−
 

Clayton 
(θ≥0 ) 

1

2 θ
−

 

0 

Cot (θ≥1) 1

2 θ
−

 

1

2 2θ−
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Table 2: tail dependence estimated for two sets of data 
generate from an asymmetric distribution function. 
𝐶𝐶 

 
𝐶𝐺 

 
𝐶𝐶𝑜𝑡 

θ  Lλ  θ  Uλ  θ  Uλ  Lλ  

0.1488 
[0.023] 

0.0266 

 

1.0898 
[0.013] 

0.1111 

 

1.4282 
[0.077] 

0.1326 0.0176 

 
0.7081 
[0.032] 

0.3757 
1.3654 
[0.019] 0.3386 

1.7946 
[0.091] 0.3496 0.3519 

[Standard errors are given in square brackets]. 
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