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1 Introduction

Forecasting daily volatility of risky assets is of importance for numerous financial applications. The

availability of intraday ultra high frequency price observations opens new horizons in volatility mod-

eling. The realized volatility measures (cf. Andersen and Bollerslev 1998, Barndorff-Nielsen and

Shephard 2004) exploit high frequency returns in order to provide precise estimators of the daily inte-

grated volatility. There are numerous approaches for modeling and forecasting daily volatility, which

are based on the realized volatility measures. Such popular approaches as ARFIMA, AR models of

higher order or MIDAS (Ghysels, Santa-Clara and Valkanov, 2006) are able to reflect the complex

volatility dynamics and to account for the empirical stylized facts characterizing daily volatility series.

We concentrate, however, on a rather simple model for daily volatility in spirit of Fleming

and Kirby (2003). The volatility process is assumed to follow a linear state space representation.

The observation equation describes relation between a volatility measure and the true (unobservable)

integrated volatility, whereas the state equation presumes an AR(1) dynamics. This simple model

should provide short-term volatility forecasts until it remains correct. Thus, it is required to check

the validity of the model at each new time point. Control charts from statistical process control are

appropriate statistical decision rules for this purpose (Montgomery, 2005). The control chart exploits

the process of volatility forecasting errors, whereas a signal from the control chart indicates on a

possibility that the initial assumptions concerning the process of interest are no longer satisfied.
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2 Modeling of Integrated Volatility

Let the log asset price y(t), t ≥ 0 be the Brownian semimartingale plus a jump component J(t)

y(t) =

∫ t

0
µ(u)du+

∫ t

0
σ(u)dW (u) + J(t),(1)

where µ(·) is a locally bounded predictable drift process, σ(·) is a strictly positive spot volatility

process, and W (·) is a standard Brownian motion. The processes µ(·) and σ(·) are presumed to be

stochastically independent of W (·). The component J(t) =
∑Nt

i=1 κi corresponds to the jump process,

with a simple counting process Nt, finite for all t, and nonzero random variables κi. In the case of no

jumps, i.e. Nt = 0 for all t, the log asset price y(t), t ≥ 0 simplifies to the Brownian semimartingale.

The integrated volatility (IV) σ2
t =

∫ t
t−1 σ

2(u)du reflects the continuous part of the overall variability

for the day t. This quantity plays the major role in the further presentation.

Since σ2
t is not observable it is necessary to estimate it. Here we consider bipower variation

measure (BV) on intraday data proposed by Barndorff-Nielsen and Shephard (2004):

BVt =
π

2

M

M − 1

M−1∑
m=1

|Rt,m||Rt,m+1|,

with Rt,m = y(tm)− y(tm−1) for t−1 = t0 < t1 < · · · < tM = t.

The BV converges in distribution to the IV under certain regularity conditions (Barndorff-

Nielsen and Shephard, 2004) with maxm(tm − tm−1) → 0, M → ∞. Although the BV is not an

efficient estimator, it is robust against jumps in the log-price behavior. Since the distribution of the

log volatility is more symmetric, further we are modeling the log volatility. The log BV remains a

consistent estimator of the log IV (cf. Bickel and Doksum 2001, p.461)

log(BVt)− log(σ2
t )

v
1/2
t

L−→ N (0, 1), with max
m

(tm − tm−1) → 0, M → ∞,

where vt is the variance of the log BV. It can be consistently estimated on the intraday data as

v̂t =

(
π2

4
+ π − 3

)
π2

4

M

M − 3

M−3∑
m=1

|Rt,m||Rt,m+1||Rt,m+2||Rt,m+3|

/
BV 2

t .(2)

Let the log IV follow the simple linear state space representation (cf. Fleming and Kirby, 2003):

log(σ2
t+1)− a = ϕ

[
log(σ2

t )− a
]
+ εt+1, εt+1 ∼ N (0, q), |ϕ| < 1,(3)

log(BVt) = log(σ2
t ) + γt, γt ∼ N (0, vt).(4)

The model has three parameters {a, ϕ, q}. The variance vt can be measured on intraday data by

(2). The innovations {εt} and {γt} are assumed to be mutually and serially uncorrelated. The

empirical (local) modeling advocates the AR(1) process in the state equation. The model (3)-(4)

can be estimated by a maximum likelihood method. In general case the quasi maximum likelihood

estimation procedure provides standard errors which are robust with respect to non-normal error

components.

The best linear forecasts of log(σ2
t ) and log(BVt) conditional on the information set It−1 are

their projections onto It−1 (Hamilton 1994, p. 134), which can be calculated recurrently by

log(σ2
t|t−1) = a+ ϕ

[
log(σ2

t−1|t−2)− a
]
+

ϕpt−1|t−2

pt−1|t−2 + vt−1

[
st−1 − log(σ2

t−1|t−2)
]
,

log(BVt|t−1) = log(σ2
t|t−1),
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with log(BV1|0) = log(σ2
1|0) = a. The conditional variance pt|t−1 = var

[
log(σ2

t )− log(σ2
t|t−1)

]
is

updated as

pt|t−1 = ϕ2 pt−1|t−2

pt−1|t−2 + vt−1
vt−1 + q, p1|0 =

q

1− ϕ2
.

The forecasting errors ηt are calculated as the difference between the observed log(BVt) and its con-

ditional forecast log(BVt|t−1):

ηt = log(BVt)− log(BVt|t−1).

The following proposition, proven by Golosnoy, Okhrin and Schmid (2011), established the stochastic

processes of the forecasting errors under model validity. These properties are required for monitoring

the validity of the state space representation in (3)-(4).

Proposition. Assuming (1) for the log price, (3)-(4) for the log volatility, the forecasting errors

ηt = st − st|t−1 have the conditional expectation E(ηt) = 0 and variance var(ηt) = pt|t−1 + vt for all

t ∈ N, and are not autocorrelated. Moreover, assuming that ω1, εt and γt are normally distributed

for all t and uncorrelated, ηt is conditionally normally distributed ηt ∼ N (0, pt|t−1 + vt) for all t.

3 Sequential Monitoring of Model Validity

Statistical process control suggests control charts as suitable tools for monitoring stochastic properties

of the process of interest. We exploit the standardized forecasting errors Xt = ηt/(pt|t−1 + vt)
1/2 for

our analysis. The model (3)-(4) given the parameters {a, ϕ, q} is assumed to be valid at t = 0. A

control chart starts at t = 1 for making on-line decisions between the hypotheses on every new day

t ≥ 1

H0,t : E(Xt) = 0 vs. H1,t : E(Xt) ̸= 0.(5)

If H0,t remains valid for all t ≥ 1 the monitored process is called to be in-control, otherwise out-of-

control.

Each control chart consists of a control statistic Zt, which depends on the process {Xt}, and a

critical limit c > 0. A control chart gives a signal at t if |Zt| > c. A good control chart should give

seldom (false) signals in the in-control state and a correct signal immediately after the process gets out-

of-control. The time period before the first signal is called the run length L(c) = inf{t ≥ 1 : |Zt| > c}.
The common criteria for the choice of c is to set the in-control average run length (ARL) equal to a

(large) predetermined value A, i.e. E(L(c) |H0,t ∀t) = A. Here the in-control ARL is set to be equal

120 which roughly correspond to half a year of daily observations.

There are various control charts suitable for making decisions between the hypotheses in (5).

Here we make use of the Shewhart control chart with Zt = Xt, which is a special case of EWMA

control charts (Montgomery, 2005). It reacts fast on large changes in the monitored processes. A Monte

Carlo simulation study investigates forecasting losses and control chart performance in different out-of-

control situations. The detecting ability of the control chart is analyzed with the out-of-control ARLs.

The out-of-control situations assume different types of changes in the model parameters {a, ϕ, q} with

both normally and t-distributed innovations. Note that we change only one parameter each time,

whereas the other two remain unchanged. The control limit is chosen c = 2.638 in order to provide

the in-control ARL A = 120 assuming normally distributed innovations. The pre-run initialization

period consist of 100 observations.
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Assume that the true model has changed (i.e. H1 is valid), but the forecasts are still conducted

with the H0 model parameters. The corresponding forecasting errors serve for the calculation of the

forecasting losses L = T−1
∑T

t=1X
2
t . Table 1 reports the average losses L̄ which are calculated for 105

replications with both normally and t-distributed innovations. Table 2 presents the ARLs for both

normally and t-distributed innovations calculated on 105 replications.

a1 N t8 ϕ1 N t8 q1 N t8

-1.00 2.68 2.86 0.1 1.04 1.39 0.134 0.73 0.97

-0.75 1.95 2.11 0.2 1.01 1.35 0.159 0.83 1.11

-0.50 1.42 1.60 0.3 1.00 1.33 0.184 0.93 1.25

-0.25 1.11 1.27 0.4 1.00 1.33 0.209 1.04 1.38

0.00 1.00 1.18 0.5 1.02 1.36 0.234 1.14 1.52

0.25 1.11 1.27 0.6 1.08 1.44 0.259 1.24 1.66

0.50 1.42 1.60 0.7 1.19 1.59 0.284 1.34 1.79

0.75 1.95 2.11 0.8 1.45 1.93 0.309 1.45 1.93

1.00 2.68 2.86 0.9 2.27 3.02 0.334 1.55 2.07

Table 1: Average losses L̄ for normally and t-distributed innovations and different types of changes in

the parameter vector. In-control values are a = 0, ϕ = 0.4, q = 0.2.

a1 N t8 ϕ1 N t8 q1 N t8

-1.00 11.3 8.97 0.1 103.7 33.5 0.134 499.9 78.3

-0.75 21.0 14.1 0.2 114.7 35.0 0.159 263.3 55.4

-0.50 42.2 21.8 0.3 120.8 35.6 0.184 158.2 41.8

-0.25 84.5 30.9 0.4 120 35.5 0.209 104.8 33.0

0.00 120 35.8 0.5 110.2 34.2 0.234 74.5 26.9

0.25 84.5 31.0 0.6 92.2 31.6 0.259 56.0 22.6

0.50 42.1 21.9 0.7 68.4 27.5 0.284 44.0 19.5

0.75 21.0 14.1 0.8 44.6 22.3 0.309 35.6 16.9

1.00 11.3 8.95 0.9 26.5 16.6 0.334 29.6 15.1

Table 2: Simulated ARLs for normally distributed and t-distributed innovations and different types

of changes in the parameter vector. In-control values are a = 0, ϕ = 0.4, q = 0.2.

Table 2 confirms that changes causing the largest average forecasting losses, as shown in Table

1, could be detected quite quickly. The obtained results allow us to conclude that the Shewhart chart

is suitable for detecting important changes in the volatility model parameters.

The empirical application in Golosnoy et al. (2011) illustrates this approach based on four

highly liquid U.S. stocks. The in-control model is estimated based on the in-sample period, whereas

the out-of-sample observations are exploited for sequential monitoring purposes. The in-sample results

do not allow us to reject the state space volatility model for any of the four stocks. The out-of-sample

monitoring clearly rejects the chosen state space representation for General Motors Company case

because of many clustered signals, which can also be explained by the publicly available information.
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