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Consider the nonparametric regression problem

yj = g(tj) + ej , j = 1, 2, ...n (1)

where yj are time series data observed at evenly spaced time points, g is smooth, tj = j/n are rescaled

times and the errors ej have zero mean and finite variance. Moreover, the errors are assumed to

depend on an unobserved stationary Gaussian process Zi via an arbitrary transformation G. In other

words, the following holds (Taqqu 1975):

ej = G(Zj) (2)

We assume that G is an arbitrary Lebesgue-measurable L2 function with respect to the standard

normal density and that it allows for a Hermite polynomial expansion with Hermite rank m ≥ 1. By

definition, the errors ej are stationary but their marginal distributions depend on the exact form of G.

When G is the identity function G(x) = x, (1) will have Gaussian errors. Typically however this will

not be the case. The form of G will be fairly arbitrary for many data sets. In some applications, the

marginal probability distribution of the errors may be time dependent as for instance in the model

ej = G(Zj , tj) (3)

Nonparametric regression models of these types have been considered by various authors for both

discrete and continuous time processes. Examples include estimation of the exceedance probabilities

and marginal distributional quantiles as functions of time, or for estimating the points of time when

rapid changes occur in the trend curve. See for instance Draghicescu (2002) and Menendez (2009)

and references therein.

This paper focuses on time series replicates that have a common trend and the errors are Gaussian

subordinated. This has applications for instance in estimating overall trend in instrumental climate

records from several locations or in finding certain common temporal features in deep core data that

occur in palaeo environmental sciences. In this paper we consider independent replicates although

generalizations are possible. Consider the nonparametric regression model defined for discrete time

processes

y
(i)
j = g(tj) + e

(i)
j , i = 1, 2, ..., k, j = 1, 2, ..., n (4)

where i denotes replication number and j is a point of time. The errors e
(i)
j are Gaussian subordinated

as,

e
(i)
j = G(Z

(i)
j , i) =

∞∑
l=m

c
(i)
l

l!
Hl(Z

(i)
j ) (5)

In (5), c
(i)
l are Hermite coefficients and satisfy some mild regularity conditions. The Hermite rank

m is a positive integer for which c
(i)
m is non-zero and c

(i)
l = 0, l < m. In general, m may vary

between replicates. For simplicity, we let the Hermite rank be the same for all replicates, so that
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the Hermite polynomial expansions for the regression errors in the different replications have the

same leading terms, except possibly for differing values of the leading Hermite coefficients. The

errors will be assumed to be independent between replicates. As for the latent Gaussian processes,

{Z(i)
j , i = 1, 2, ..., k} are k ≥ 1 stationary zero mean Gaussian processes with

cov

(
Z

(i)
j , Z

(i
′
)

j′

)
= 0, i 6= i

′

= γi

(
|j − j′ |

)
, i = i

′

where γi

(
|j − j′ |

)
is characterized via a fractional differencing parameter δi ∈ (−1/2, 1/2) and a

positive constant Ci as follows:

• fi(λ) ∼ Ci|λ|−2δi as λ→∞ is the spectral density of Z(i) and

• The spectral density above implies the covariances γi(u) ∼ Di|u|2δi−1, δi 6= 0 where,

Di = Cisin(πδi)Γ (1− 2δi) /(1 + 2δi).

In particular, δi > 0 implies long-range dependence in Zi in which case,
∑∞

u=−∞ γi(u) =∞ and fi(λ)

has a pole at zero. Our aim lies in estimating the trend g and its derivatives by smoothing the sample

mean

ȳj =
1

k

k∑
i=1

yi,j

using for instance the kernel estimator

ĝ(ν)(t) =
1

nb

n∑
j=1

K(ν)

(
tj − t
b

)
ȳj (6)

for ν ≥ 0 and K(ν) is a suitably defined kernel (e.. Gasser & Mueller 1984). More generally, ȳj in

(6) may be replaced by a locally smoothed estimator. For instance if the replicates result from the

use of a covariate as for instance in a randomized block design, values of the covariate can be used

for estimation of ȳj for a replicate group. The focus here is investigation of the role of the number

of replicates k in relation to the sample size n. Of special interest is the case when the fractional

differencing parameters δ1, δ2, ..., δk are random and have a common distribution function F. It is of

interest to know in what way the moments of F play a role. Note that the mean spectral density at

the origin can be directly related to the moment generating function of F ; see Ghosh (2001).
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