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Introduction

We consider the model

x(t) = µ
(
t
n

)
+ ξt (t = 1, . . . , n)

with µ denoting a piecewise polynomial function and (ξt)t∈Z a stationary stochastic process. Thus

µ(s) =
l∑

k=0

pk∑
j=1

aj,k(s− κk)
bj,k

+

with some knots 0 = κ0 < κ1 < . . . < κl < 1, regression coefficients aj,k ∈ R and integer exponents
bj,k. The exponents bj,k are assumed to be positive for all k > 0 so that µ is continuous. The error
process is given by

ξt =
∞∑
j=0

cjεt−j

with (cj)j∈Z ∈ l
2 (Z) and (εt)t∈Z denoting an iid sequence such that E [εt] = 0 and E [|εt|r] < ∞ for

some r > 2. Define γ(k) = Cov (ξt, ξt+k) and D2(n) = Var (
∑n
t=1 ξt). The linear process ξt is assumed

to satisfy one of the following conditions:

1. Short memory:∑
k∈Z
|γ(k)| <∞, 0 <

∑
k∈Z

γ(k) <∞.

In this case, we have

D2(n) ∼ n
∑
k∈Z

γ(k).(1)

2. long memory: there exists N ∈ N, a slowly varying function L and α ∈ (0, 1) such that

γ(k) = L (k) k−α (k ≥ N).

In this case, we have∑
k∈Z
|γ(k)| =∞
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and

D2(n) ∼ 2n2γ(n)
(1− α) (2− α)

.(2)

3. antipersistence: there exists N ∈ N, a slowly varying function L and some α ∈ (1, 2) such that

γ(k) = −L (k) k−α (k ≥ N),
∑
k∈Z

γ(k) = 0.

In this case, we have

D2(n) ∼ 2n2 |γ(n)|
(α− 1) (2− α)

.(3)

Furthermore, we assume that E
(
ξ4
t

)
<∞ and Var

(
n−1∑n

t=1 ξ
2
t

)
→ 0. In the case of antipersistence,

we assume in addition that r (2− α) > 2.
If the number of knots is known, both the regression coefficients and the position of the knots can

be estimated consistently by least squares regression. The asymptotic distribution of the parameter
estimates can be derived by non-linear least square techniques (see Gallant 1974, Feder 1975, Liu et
al 1997 and Kim and Kim 2008 for the case of iid errors, Beran and Weiershäuser 2010 and Beran et
al. 2011 for the cases of long memory and antipersistence).

In practice, the number of knots is typically unknown and therefore needs to be estimated. Yao
(1988) showed consistency of the Schwarz criterion for piecewise constant spline functions and iid
normal random variables. Liu et al. (1997) show that for locally exponentially bounded iid errors the
number of knots can be estimated consistently by minimising a modified Schwarz criterion

MIC(l) = log [S (κ̂1, . . . , κ̂l) /(n− p∗)] + p∗
c0 (log(n))2+δ0

n
.

Here, S (κ̂1, . . . , κ̂l) denotes the residuals sum of squares obtained under a model with l knots and p∗

parameters in total, c0 and δ0 denote strictly positive constants.

Asymptotic results

The following definitions are used.

Definition 1 The space of ordered l-tuples is denoted by

Sl =
{

(k1, . . . , kl) ∈ (0, 1)l : k1 < k2 < . . . < kl
}
.

Moreover, define for all ∆ > 0

Sl∆ =
{

(k1, . . . , kl) ∈ Sl : |ki − kj | ≥ ∆
}
.

Definition 2 Let l ∈ N, pk ∈ N \ {0} and bj,k ∈ N (j = 1, . . . , pk, k = 0, . . . , l). For each tripel
(l, (pk), (bj,k)), define the parametric family M = Ml,(pk),(bj,k) of spline functions by

M =

µ : [0, 1]→ R, µ(t) =
l∑

k=0

pk∑
j=1

aj,k(t− κk)
bj,k

+ , κ0 = 0, (κk)
l
k=1 ∈ Sl, aj,k ∈ R

 .
Likewise,

M (∆) =

µ : [0, 1]→ R, µ(t) =
l∑

k=0

pk∑
j=1

aj,k(t− κk)
bj,k

+ , κ0 = 0, (κk)
l
k=1 ∈ Sl∆, aj,k ∈ R

 .
We refer to l as the number of knots and to pM = l +

∑l
k=0 pk as the total number of parameters of

M.
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Definition 3 Let Λ = {M1, . . . ,Mq} be a set of parametric spline families. We say that Λ is com-
patible with µ, if there exists Mk ∈ Λ such that

1. µ ∈Mk,

2. The number of knots in Mk is equal to the number of knots in the minimal representation of µ,

3. pMk
< pMj for all j 6= k such that µ ∈Mj.

In this case, we refer to Mk as compatible model.

Definition 4 Define the following sequences

(r(n))n∈N with r2(n) =
n2

D2(n)
∼ nαL(n),

(h(n))n∈N ⊂ R∗+ such that h(n)→∞.

If (ξt)t∈Z has either long or short memory, define

(λ(n))n∈N ⊂ R∗+ such that
λ(n)
r2(n)

→ 0 and
h(n) log log(n)

λ(n)
→ 0.

If (ξt)t∈Z is antipersistent, define

(λ(n))n∈N ⊂ R∗+ such that
λ(n)
n
→ 0 and

h(n)
λ(n)

→ 0.

For example, we may choose λ(n) = log(n) and h(n) =
√

λ(n)
log log(n) .

Definition 5 Let x(t) = µ
(
t
n

)
+ ξt, t = 1, . . . , n as above and let Λ = {M1, . . . ,Mq} be a compatible

set of spline families. For i ∈ {1, . . . , q}, define σ̃2
Mi,h

by

σ̃2
Mi,h

= inf

{
1
n

n∑
t=1

(xt − f(t/n))2 : f ∈Mi

(
h−1(n)

)}
.

The determination of σ̃2
Mi,h

can be regarded as a restricted least square estimation: given an observed
series x(1), . . . , x(n), we obtain the optimal fit µ̂ ∈ Mi

(
h−1(n)

)
. The space of admissible functions

is restricted by a lower bound h−1(n) for the distance between knots. Note that h−1(n) → 0, since
h(n)→∞.

Now, the information criterion can be defined as follows:

Definition 6 If (ξt)t∈Z has either short or long memory, define

I(Mi) = log
(
σ̃2
Mi,h

)
+ pMi

λ(n)
r2(n)

.

If (ξt)t∈Z is antipersistent, define

I(Mi) = log
(
σ̃2
Mi,h

)
+ pMi

λ(n)
n

.

Given a set a models {M1, . . . ,Mq}, we estimate the true model by minimising I(Mi). This estimation
procedure is consistent in the following sense:

Theorem 1 Let Λ = {M1, . . . ,Mq} be a compatible set of spline families and Mk the compatible
model. Then, for all i 6= k,

P [I (Mi) > I (Mk)]→ 1 as n→∞.
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The proof of this theorem relies on a law of the itertated logarithm by Lai and Wei (1982).
Note that the denominator n−1 in the case of antipersistence is of the same order as r−2(n)

under short memory (up to a slowly varying function).
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