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Empirical likelihood (el) (Owen, 1988) has first been introduced by Hartley and Rao (1968)

under the name scale load approach. Since Chen and Qin (1993) suggested its first application in survey

sampling, there have been many recent developments of (el) based methods in survey sampling (e.g.

Rao & Wu, 2009) and adaptive sampling (Salehi, et al. 2008). Standard confidence intervals based

upon a normal distribution can perform poorly when the sampling distribution is not normal. On

the other hand, el confidence intervals may be better in this situation, as el confidence intervals

are determined by the distribution of the data (Rao & Wu 2009). The range of the parameter space

is also preserved. This may not be the case for standard confidence intervals based upon a normal

distribution, as standard confidence intervals can have negative lower bounds for a positive point

estimator. Chen and Sitter (1999) proposed a pseudo el approach which can be used to construct

confidence intervals for the Hájek (1971) ratio estimator (Wu & Rao, 2006). The pseudo el approach

is not entirely appealing from a theoretical point of view (Rao & Wu 2009) as it is not a genuine el

approach, and it is not applicable to the Horvitz-Thompson (1952) estimator. We propose a true el

approach for unequal probability sampling without replacement based on Kim (2009) el approach.

We derive the asymptotic distribution of the profile empirical likelihood and support our results with

a simulation study.

Empirical likelihood for total

Let U = {1, . . . , N} denote a finite population of size N , and s denote a sample selected with

unequal probabilities from U . A parameter of interest is denoted by θ(M) where M is the population

mass which gives a unit mass of 1 for all units i ∈ U ; that is, Mi = 1 for all i ∈ U . For example,

a total of a variable y is given by θ(M) =
∫
ydM =

∑
i∈U yi = Y . The mass M is estimated by m̂

which given the mass m̂i for all units i ∈ s. Deville (1999) suggests using m̂i = 1/πi which gives the

substitution estimator θ(m̂) =
∫
ydM̂ =

∑
i∈s yi/πi = Ŷht which is the well known Horvitz-Thompson

(1952) estimator. We propose to use an el method to estimate M .

Consider a conditional Poisson sampling design (Hájek, 1981). Let pi denote the first-order

inclusion probabilities of the unconditional Poisson sampling. The first-order inclusion probabilities

of the conditional Poisson sampling are denoted by πi (Hájek, 1964).

Let y1, ..., yN be the vector of realised values of the finite population with the cumulative distri-

bution function F (y) = N−1
∑N

i=1 I(yi6y) where I(·) is the indicator function, i.e., I(yi 6 y) takes the

value one if yi 6 y and takes the value zero otherwise. As F (y) belongs to a family of distributions

with support on {y1, . . . , yn} we have that

(1) Fs(y) =
1

N̂π

∑
i∈s

miI(yi6y)
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for some mi’s which are such that
∑

i∈smi = N̂π =
∑

i∈s π
−1
i and mi > 0. Following Kim’s (2009) ap-

proach we found that under conditional Poisson sampling, the distribution in (1) implies the following

el

(2) L(m) =
∏
i∈s

(
pimi∑
i∈s pjmj

)
.

The estimator m̂ of M with m̂ = {m̂1, . . . , m̂n} maximises the el (2) under the following constraints

(3)
∑
i∈s

mi = N̂π and
∑
i∈s

mixi = X

with xi = πi and X =
∑

i∈U πi = n. The first constraint guarantees that (1) is a distribution function.

The second constraint is the fixed sample size constraint. We can use an iterative procedure (Newton-

Raphson) to calculate mi. The point estimator of the total is Ŷel =
∑

i∈s m̂iyi where m̂i maximizes (2)

under the constraints (3). Note that as pi l πi, we have that m̂i l 1/πi and Ŷel l Ŷht =
∑

i∈s yi/πi.

Asymptotic distribution of the profile likelihood

Under a set of regularity conditions, we show that

r∗(Y ) = r(Y )× ṽar(Ŷel, Y )

v̂ar(Ŷht)

is asymptotically distributed as χ2
1 under πps sampling; where r(Y ) = −2[l(m(Y )) − l(m)], l(m) =

logL(m) is the maximum value of the el log likelihood function defined in (2) subject to constraints (3)

and l(m(Y )) = logL(m) is the maximum value of el log likelihood subject to these latter constraints

(3) and the additional constraint
∑

i∈smiyi = Y ; ṽar(Ŷel, Y ) = σ̂yy − σ̂yxσ̂−1xx σ̂xy where σ̂yy, σ̂yx, σ̂xx
and σ̂xy are components of the following matrix(

σ̂xx σ̂xy
σ̂yx σ̂yy

)
≡

{∑
i∈s

1

p2i

(
xir −

Xr

N̂π

)(
xiq −

Xq

N̂π

)}
r,q∈{1,2}

where xi1 = xi = πi, xi2 = yi, Xr =
∑

i∈U xir, Xq =
∑

i∈U xiq and v̂ar(Ŷht) is a consistent estimator

for the variance of the Horvitz-Thompson Ŷht estimator of Y . Note that ṽar(Ŷel, Y ) is a biased

estimator for the variance of Ŷel.

Estimation of confidence intervals using profile likelihood

As

r∗(Y )→ χ2
1

an approximate 100(1−α)% confidence interval for Y is given by the minimum and maximum values

of the following set

{Y : r∗(Y ) 6 χ2
1−α,1}

where χ2
1−α,1 is the (1− α)th quantile of the χ2

1 distribution.

A numerical example

Consider N = 2000 values given by ỹi = 1 +
√

(0.5)(zi − 3) + ei (Kim, 2009) where zi =

(1/N)γ − 1/γ for γ = 1, 2, 3 and ei ∼ N(0, 1). We consider πi = nzi/
∑

i∈s zi. The variable of interest

is defined by yi = (y(i)−min[y(i)])/N and 1000 πps samples of size n = 100 were selected with unequal
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probability using Rao-Sampford sampling design (Rao 1965, Sampford 1967). Coverages of confidence

interval are given in Table 1. The Monte-Carlo coverages are close to the target value of 95%.

Table 1. Monte-carlo coverage of confidence intervals

skewness(πi) Coverage Average length

0.00 94.9% 0.431

0.63 93.7% 0.546

1.06 93.7% 0.683
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RÉSUMÉ

Nous proposons une approche du type vraisemblance empirique pour estimer l’intervalle de confi-

ance de l’estimateur de Horvitz-Thompson (1952) pour un plan de sondage a probabilité inégales sans

remise. Nous montrons que sous des conditions de régularité, le profile de la vraisemblance empirique

transformé a une distribution chi carré. Nous présenterons également quelques résultats de simulation.
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