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1. Short-term traffic flow forecasting

Nowadays, there is an emerging use of Intelligent Transportation Systems, ITS, which refers to

a combination of communication technologies to optimize the capacity of a transportation network. In

the ITS environment, a large quantity of dynamic real-time information is obtained from various points

such as vehicle detectors, sensors and cameras, etc; then, the traffic system manages the network by

analyzing the dynamic information. One of the most important tasks of ITS is forecasting the traffic

network, the process of predicting future traffic conditions based on observations in the past.

Most of traffic forecasting models are ’univariate’ in terms of number of locations, i.e. the spatial

correlation of several locations is not considered. This issue is due to the increased model complexity

and the real time requirement of applications. Furthermore, most work follows a frequentist approach.

In this study, we use a k-dimension Seasonal Vector Auto-Regressive Moving Average (SVARMA)

of additive form and compare with a univariate model. We adopt Bayesian approach and implement

MCMC sampling to realize parameter estimation and prediction.

2. SVARMA

We use a VARMA of additive form with a seasonality effect.

(1) Φ(B)(Yt − β) = Θ(B)Et

with

Φ(B) = I −
p∑

i=1

φiB
i

Θ(B) = I +

q∑
i=1

θiB
i

where B is the backshift operator i.e. B.Yt = Yt−1; Yt, β are k × 1 vectors and Et ∼ N(0,Σe). Each

element of φ or θ is a k × k matrix.
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Let IP be a set of integers. If i /∈ IP then φi = 0; otherwise, we have φi 6= 0 and its

corresponding SP i. Notice that p = max(IP). Similarly, there is IT for the MA coefficients. So, for

the VARMA model with season period 10, we can set IP = (1, 10, 20).

VARMA accounts for spatial-temporal dependency, for example, Yt,i and Yt−1,j between 2 sites

i and j. This dependency is defined by the matrix φi which can be a full matrix. However, using

the full matrix is computationally costly. Hence, we try to reduce the dimension and computational

cost by adding neighbour information, as in GMRF. We use matrix SP i to denote the dependency;

SP i(j, l) = 1 iff φi(j, l) 6= 0; otherwise, SP i(j, l) = 0. The matrix ST i is for θi dependency. In a traffic

network, the model with first order dependency may be used, i.e. the traffic flow of each junction only

depends on its neighbour flows.
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