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Abstract

Estimating the change in poverty and income inequality indicators over time from repeated sample
surveys is of increasing interest for evidence based policy making. Therefore, the topic of cross-sectional
estimation is addressed first, where a focus is put on variance estimation for non-linear statistics and
on the usage of model based estimators to improve the accuracy of point estimates. Secondly, variance
estimation for change is considered, where change is measured through differences in cross-sectional
estimates estimated from overlapping samples.
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Indroduction

With Europe 2020, the EU has set up a new growth strategy for the forthcoming decade. To
assess the issues of poverty and social exclusion, a set of indicators has been agreed on to be published
each year by all member states. These indicators include the at-risk-of-poverty rate (ARPR) or the
quintile share ratio (QSR). To measure these indicators on EU level in a comparable way, the European
Statistics on Income and Living Conditions (EU-SILC) has been introduced. They include separate
national sample surveys which collect micro data on an annual basis.

Since indicators are estimated from sample surveys´, variance estimation is needed in order
to provide information on the sampling error. Because the statistics involved are highly non-linear,
standard variance estimation procedures cannot be applied directly. Thus, resampling methods or
linearization techniques can be used to assess the variance. Another aspect of sample surveys are their
often limited sample sizes, especially with respect to particular domains or areas within the population.
Estimation can be improved by model based (small area) estimators. These methods help to augment
the information by borrowing strength from other domains or areas, and hence increase the effective
sample size.

Besides interpreting indicator estimates for each year separately, their evolution over time is of
major interest. Therefore, longitudinal measures have to be used. For instance, the difference between
indicator values measured at two different years may be used as a measure of change. If a change is
observed then the question arises whether it is statistically significant or not. For this reason variance
estimation for measures of change is required. It is necessary to construct a statistical test, which can
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be used as a basis for decision-making. If the samples are overlapping, then correlation through time
between indicators has to be taken into account, as it is the case for the EU-SILC survey which has a
rotational pattern (see Verma et al., 2007).

In this paper approaches to handle the above mentioned topics are presented exemplary for
the ARPR. First, the issue of estimating the design variance of the ARPR is addressed. Second, a
model based approaches to the estimation of the ARPR in small areas or domains is presented. Third,
a method for variance estimation of change will be depicted. Finally, the paper concludes with a
summary and an outlook.

Design Based Estimation of the APRR

The ARPR is defined as the share of persons in a population with an income below the at-
risk-of-poverty threshold (ARPT). Within the EU the ARPT is set to 60% of the median equivalised
disposable income (EDI) (for a definition of the EDI see Eurostat, 2009). Thus, the ARPR can be
defined as

ARPR = F (0.6F−1(0.5)) ,

where F is the distribution function of the EDI and F−1 is the inverse of F , i.e. F−1(0.5) is the
median. If the ARPR is estimated based on a sample vector y = (y1, . . . , yn), with yi as EDI of
the i-th element in a sample s of fixed size n, drawn from a finite population U of size N , then the
following estimator may be used:

ÂRPR = F̂ (0.6F̂−1(0.5)) ,

where F̂ (x) =
∑

i∈swi1(yi ≤ x)(
∑

i∈swi)
−1, F̂−1(p) = inf

{
x ∈ R : p ≤ F̂ (x)

}
, and wi is the survey

weight of the i-th sampling unit.
Two widely used approaches to estimate the variance of ÂRPR exist: resampling methods and

linearization techniques. Resampling methods like the bootstrap, balanced repeated replication or
jackknife routines select two or more (sub-) samples from a given population, or possibly from a
sample, and compute a separate estimate of the population parameter of interest from each (sub-)
sample. Variance estimation is done from the combination of all (sub-) samples. In general, there is
no need to adapt resampling methods to a specific statistic, it might be difficult though to use them
in the presence of complex survey designs, like sampling with unequal probabilities (Wolter, 2007;
Bruch et al., 2011). Linearization techniques, quite to the contrary of the resampling, allow the
utilization of standard variance estimation techniques. These are available for most survey designs
used in practice (see e.g. Lohr, 1999). However, linearization requires that, at first, for each estimator
a linear function approximating the estimation function is derived.

The main idea of linearization is to reduce the problem of estimating a non-linear statistic to that
of a linear one. For statistics which can be expressed by functions that are continuously differentiable
up to order two and are asymptotically normal, the Taylor method leads to proper results. This is, for
instance, the case if the estimator can be displayed as a ratio of estimated totals or means. However,
F̂ is a discontinuous function which makes ÂRPR not suitable for the Taylor approach. A solution to
this problem is to use the concept of influence functions, which, up to now, is widely used in the field of
robust statistics (see Hampel et al., 1986). The derivation of influence functions requires differentials
of the estimator in the sense of Gâteaux (see Shao, 2003, pp. 339). Deville (1999) used the following
form of an influence function of an indicator θ

IT (θ(M), y) = lim
ε→∞

T (M + εδy)− T (M)
ε

,
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where δy is the unit mass at point y ∈ R with M =
∑

i∈U δyi and θ(M) is defined as a functional with
respect to the finite discrete measure M . If we estimate θ(M) by substituting M with a stochastic
measure M̂ =

∑
i∈swi, it can be shown that V(

∑
i∈s ziwi) equals the asymptotic variance of θ(M̂),

where zi is the influence function IT (θ(M), yi) (for the necessary assumptions see Deville, 1999 or
Goga et al., 2009). Deville (1999) gave some practical rules to derive influence functions for varied
functionals θ(M), which can be used to derive the influence function of ÂRPR, which is given by

IT (ARPR, yi) =
1
N

(
1[yi ≤ 0.6F−1(0.5)]−ARPR

)
− 0.6F ′[0.6F−1(0.5)]

F ′[F−1(0.5)]

(
1[yi ≤ F−1(0.5)]− 0.5

N

)
,

where F ′ is the derivative of F . Because IT (ARPR, yi) involves the unknown quantities ARPR, F−1,
and F ′, they need to be subsituted by estimates which gives ẑi, the sample estimate of zi. For ARPR
and F−1 estimators are given above and an estimator for F ′(x) can be obtained by a kernel density
estimator (see e.g. Silverman, 1986). Finally, the asymptotic variance of ÂRPR can be estimated
by V̂(

∑
i∈s ẑiwi), where V̂ is a variance estimator for an estimated total. In a pure design based

framework we have wi = π−1
i , where πi is the inclusion probability of the i-th element into sample s,

and the estimator

V̂

(∑
i∈s

ziwi

)
=

n∑
i=1

n∑
j=1
j>i

πiπj − πij
πij

(
ẑi
πi
− ẑj
πj

)2

(1)

can be used, where πij is the probability of including both the i-th and the j-th element into sample
s (see Cochran, 1977, p. 261 ).

Model Based Estimation of the ARPR

Sometimes it is useful to incorporate models into the estimation process. Especially when
sampling fractions are small, direct estimators run into serious problems. Therefore, in small area
statistics models are build over a wider population in order to borrow strength from other areas. For
estimating the ARPR in a small area context two approaches are presented. Lehtonen and Veijanen

(2009) and Lehtonen et al. (2011) propose to estimate the probability of a unit to fall under the
poverty threshold. Assume η̂id is the estimated probability of unit i in area d to be at-risk-of-poverty
under a certain model. Then an asymptotically design unbiased estimator for the ARPR is:

(2) ÂRPR
GLMM

d (η̂id) = N−1
d (

∑
i∈Ud

η̂id +
∑
i∈sd

wid(1(yid < ARPT)− η̂id))

The probability η̂id can be estimated, e.g., under a logistic model or a logistic mixed model (GLMM).
To estimate the variance of (2) resampling methods can be employed (see e.g. Myrskylä, 2007 where
several resampling methods are evaluated).

Molina and Rao (2010) proposed another approach. They model the income variable using a
unit-level linear mixed model.

Yid = XT
idβ + ud + eid, vd ∼ N(0, σ2

v), eid ∼iid N(0, σ2
e), i = 1, · · · , Nd, d = 1, · · · , D .

From the fitted model a set of K prediction vectors ŷ(k)
id = xidβ̂ + ζid is derived for the nonsampled

population, with ζid beeing the sum of two random numbers ζ(u)
d ∼ N(0, σ̂2

u(1 − γ̂d)) and ζ
(e)
id ∼

N(0, σ̂2
e). The ARPR is then estimated by

(3) ÂRPR
MOLRAO

d =
1
Nd

∑
i∈sd

1(yid < ARPT) +
∑

i∈Ud\sd

1
K

K∑
k=1

1(ŷ(k)
id < ARPT)

 .
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Molina and Rao (2010) suggest to use a parametric bootstrap in order to obtain a MSE estimate
for estimator (3).

Estimation of Measures of Change

Suppose we have a rotational sampling scheme which provides repeated samples from the same
(stationary) population U over time. Further, let s0 and s1 denote two overlapping samples of equal
size n, reported at time points t = 0 and t = 1, i.e. s0∩ s1 6= ∅. If one is interested in the development
of indicator θ, estimated between t = 0 and t = 1, an intuitive estimator for change would simply be
the difference ∆̂ = θ̂0 − θ̂1, where θ̂0 is the estimate of θ based on sample s0 and θ̂1 the estimator of θ
based on s1. The variance of ∆̂ is given by

V
(

∆̂
)

= V(θ̂0) + V(θ̂1)− 2 Cov(θ̂0, θ̂1) .

If θ̂ is not suitable for linearization via Taylor series, Goga et al. (2009) show that V(∆̂) can be
approximated by using (partial) influence functions, hence the following approximation applies

V
(

∆̂
)
≈ V

(∑
i∈s0

wi0zi0

)
+ V

(∑
i∈s1

wi1zi1

)
− 2 Cov

(∑
i∈s0

wi0zi0 ,
∑
i∈s1

wi1zi1

)
(4)

(see also Dell and d’Haultfoeuille, 2008). The first two terms in (4) are approximations for the
variances of θ̂0 and θ̂1, where zi0 and zi1 are the influence functions of θ̂0 and θ̂1, respectively, which
can be estimated by (1). The third term is the covariance between the estimated totals of zi0 and zi1 .
Setting wi0 = π−1

i0
and wi1 = π−1

i1
, where πi0 and πi1 are the inclusion probabilities of the i-th element

into sample s0 and s1, respectively, the covariance can be estimated by

Ĉov(
∑
i∈s0

wi0 ẑi0 ,
∑
i∈s1

wi1 ẑi1) =
∑
i∈s

∑
j∈s

πij01 − πi0πj1
πij01

ẑi0
πi0

ẑj1
πj1

=
∑
i∈s

(
πii01 − πi0πi1

πii01

)
ẑi0 ẑi1 −

∑
i∈s

∑
j∈s
j 6=i

(
πij01 − πi0πj1

πij01

)
ẑi0 ẑj1 ,

where πij01 denotes the joint probability of including the i-th element in s0 and the j-th element in s1
and πii01 is the probability of including the i-th element in both s0 and s1 (see Tam, 1984). How this
longitudinal inclusion probabilites can be calculated depends on the rotational sampling scheme. Tam

(1984) gave a framework to estimate the covariance from overlapping samples and applied it to some
typical rotational sampling schemes. Qualité and Tillé (2008) also provide an overview on how to
estimate the covariance between estimated totals for some specific cases of repeated samples. Berger

(2004) presents an approach which allows for sampling designs with unequal selection probabilities.
Consider that ∆̂ is the difference between estimator of kind (2) or (3), variance estimation might

not be possible by using the same variance formula as in (4). In contrast to classical estimators, where
linerization is well studied, we have chosen for the model based case to follow a resampling approach
instead. Therefore, we propose to employ the follwoing bootstrap method. Efron (1979) introduced
the bootstrap for a iid sample vector y. Here, the version of a Monte Carlo bootstrap is considered,
where replicates y∗ of y are generated by taking repeatedly random resamples of size n from F̂ . If we
have samples on two occasions then we also need replicates y∗0 and y∗1 from the sample vectors y0 and
y1, corresponding the samples s0 and s1, respectively. If, however, samples s0 and s1 are generated
by a rotational sampling scheme, then we need to coordinate the generation of the replicates. For
simplicity we assume that sets s01 = s0 ∩ s1 and s1\0 = s1\s0 have fixed sizes n01 and n1\0 and that
s0 and s0\1 are selected by simple random samling. For elements in the overlapping part we take one
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resample s01∗ of size n01 from s01. From the non-overlapping parts we take a resample s∗1\0 from s1\0
of size n1\0 and a resample s∗0\1 from s0\1 = s0\s1 of size n− n01. Thus, we have s∗0 = {s∗01, s

∗
0\1} and

s∗1 = {s∗01, s
∗
1\0} boostrap replications for samples s0 and s1. The boostrap variance estimator for ∆̂

would be

Vboot

(
∆̂
)

=
1
B

B∑
b=1

(
∆̂∗b −

1
B

B∑
b=1

∆̂∗b

)2

,

where ∆̂∗b is the estimate of ∆ based on the b-th replicate of y0 and y1. This boostrap variance
estimator is suitable if it can be assumed that the elements in the non-overlapping parts s0\1 and s1\0,
are independend of each other (see Roberts et al., 2001).

Summary and Outlook

The methods presented within this paper can readily be extended to indicators of income inequa-
lity like the QSR or the Gini coefficient. For the estimation of the design variance of such indicator
a thorough overview can be found in Münnich and Zins (2011). For small area estimates of these
indicators we refer to Lehtonen et al. (2011).

In order to compare the performance of the different methods, empirical results from a large
scaled design based Monte Carlo study will be presented. A special focus is put on the influence of
sampling designs on the accuracy of the different estimators. Additionally, the importance of good
auxiliary variables for the accuracy of small area estimators will be assessed.
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