
Generalized madogram and pairwise dependence of maxima over two

disjoint regions of a random field

Fonseca, Cećılia
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1. Introduction

Quantifying dependence between extreme events occurring at several locations of a random

field is a fundamental issue in applied spatial extreme value analysis. For max-stable processes,

Z = {Zx}x∈R2, an important measure of pairwise dependence is the λ-madogram defined in Naveau

et al. [4] as

(1) νλ(x1,x2) =
1

2
E
[∣∣∣F λ(Zx1) − F 1−λ(Zx2)

∣∣∣
]
, λ ∈ (0, 1),

where F denotes the marginal distribution of Z. This function resumes the dependence structure of

(Zx1, Zx2).

In this paper we propose a generalization of the λ-madogram that enables the analysis of depen-

dence between maxima over two disjoint regions of locations x = {x1, . . . ,xk} and y = {y1, . . . ,ys}.

This generalized madogram is defined as

(2) να,β(x,y) =
1

2
E
[∣∣∣Fα(M(x)) − F β(M(y))

∣∣∣
]
, α ≥ 0, β ≥ 0,

where M(x) =
∨k

i=1 Zxi
and M(y) =

∨s
i=1 Zyi

.

Remark 1 When we take β = 1 − α, α ∈ (0, 1), and k = s = 1 in (2), we obtain (1).

The paper is organized as follows. Some properties of the function να,β(x,y) are summarized

in Section 2. In Section 3 we introduce two estimators of να,β(x,y). Finally, in section 4 we define

a multivariate maxima of moving maxima random field, compute its generalized madogram for some
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choices of x and y and analyze the performance of the estimators of να,β(x,y) through a simulation

study.

2. Generalized madogram and dependence of spatial extreme events

In this section we shall assume that the margins of Z = {Zx}x∈R2 have a unit Fréchet distribution,

F (x) = exp(−x−1), x > 0.

The following proposition states that να,β(x,y) provides dependence information between the

regions x and y through the dependence function of a multivariate extreme value distribution.

Proposition 1 For any max-stable random field with unit Fréchet margins and for each pair of dis-

joint regions of locations x = {x1, . . . ,xk} and y = {y1, . . . ,ys} in IR2, we have

να,β(x,y) =
Vx,y(α, . . . , α, β, . . . , β)

1 + Vx,y(α, . . . , α, β, . . . , β)
− c(α, β)

with

c(α, β) =
1

2

(
Vx(1, . . . , 1)

α + Vx(1, . . . , 1)
+

Vy(1, . . . , 1)

β + Vy(1, . . . , 1)

)
,

where

Vx,y(z1, . . . , zk, zk+1, . . . , zk+s) = − ln Gx,y(z1, . . . , zk, zk+1, . . . , zk+s)

and

Gx,y(z1, . . . , zk+s) = P

({
k⋂

i=1

{Zxi
≤ zi}

}

∩

{
s⋂

i=1

{Zyi
≤ zk+i}

})

, zi ∈ IR.

To obtain the result, we just transform the definition of να,β(x,y) through the relation

|a − b| = 2(a ∨ b) − (a + b).

Remark 2 If Z has unit Fréchet margins, the dependence function V is homogeneous of order -1,

i.e., V (αu1, . . . , αuk) = α−1V (u1, . . . , uk), and therefore

ǫx = Vx(1, . . . , 1),

where ǫx is the extremal coefficient defined in Schlather and Tawn [5], which measures the extremal

dependence between the variables indexed in the region x. So, c(α, β) considers the dependence in

each of the regions x and y through the extremal coefficients of vectors with margins Zx1, . . . , Zxk
and

Zy1
, . . . , Zys

.

In the following proposition we establish some properties of the generalized madogram.

Proposition 2 Let x = {x1, . . . ,xk} and y = {y1, . . . ,ys} be disjoint regions of IR2. We have, for

each α, β ∈ IR+
0 ,

1. 0 ≤ να,β(x,y) ≤ 1
2 ;

2. ν0,0(x,y) = 0;

3. ν0,β(x,y) = β
2(β+ǫy) ;

4. να,0(x,y) = α
2(α+ǫx) ;

5. να,α(x,y) =
ǫ(x1,...,xk,y1,...,ys)

α+ǫ(x1,...,xk,y1,...,ys)
− 1

2

(
ǫx

α+ǫx
+

ǫy
α+ǫy

)
.
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Remark 3 The function να,α(x,y) can also be related with the dependence coefficients considered

in Ferreira [3] as follows:

να,α(x,y) =
ǫyǫ1(x,y)

α + ǫyǫ1(x,y)
− c(α,α) =

(ǫy + ǫx)ǫ2(x,y)

α + (ǫy + ǫx)ǫ2(x,y)
− c(α,α), α > 0,

where ǫ1(x,y) =
ǫ(x1,...,xk,y1,...,ys)

ǫy
and ǫ2(x,y) =

ǫ(x1,...,xk,y1,...,ys)

ǫx + ǫy
. These coefficients evaluate the

strength of dependence between the events {M(x) ≤ u} and {M(y) ≤ u} .

Remark 4 If the variables M(x) and M(y) are independent then

να,α(x,y) =
ǫx + ǫy

α + ǫx + ǫy
− c(α,α),

whereas if the variables are totally dependent

να,α(x,y) =
ǫx + ǫy

2α + ǫx + ǫy
− c(α,α).

Remark 5 The relation in 5. of Proposition 2. suggest that estimators for να,α(x,y) can be consid-

ered from those available for ǫx and ǫy (Schlather and Tawn [5]).

3. Estimating the generalized madogram

Let (Z
(t)
x1 , . . . , Z

(t)
xk

) and (Z
(t)
y1

, . . . , Z
(t)
ys

), t = 1, . . . , T, be independent replications of (Zx1 , . . . , Zxk
)

and (Zy1
, . . . , Zys

), respectively. Hence {Mt(x) =
∨k

i=1 Z
(t)
xi , t = 1, . . . , T} and {Mt(y) =

∨k
i=1 Z

(t)
yi

,

t = 1, . . . , T} are random samples of M(x) and M(y), respectively.

If the marginal distribution F of Z is known then a natural estimator for the generalized mado-

gram is given by

ν̂α,β(x,y) =
1

2

1

T

T∑

i=1

|Fα(Mi(x)) − F β(Mi(y))|, α ≥ 0, β ≥ 0.

When F is unknown it can be estimated by the empirical distribution function and in this case we

obtain the following estimator for να,β(x,y) :

(3) ̂̂ν
α,β

(x,y) =
1

2

1

T

T∑

i=1

|F̂α
kT (Mi(x)) − Ĝ

β
sT (Mi(y))|, α ≥ 0, β ≥ 0,

where

F̂kT (u) =
1

kT

k∑

i=1

T∑

j=1

1I{Mj(xi)≤u} and ĜsT (u) =
1

sT

s∑

i=1

T∑

j=1

1I{Mj(yi)≤u}.

Theoretical properties of this estimator can be derived in the framework of general rank order

statistics of extreme events (Fermanian et al. [2], Van Der Vaart and Wellner [7])

4. An M4 random field

It is well known that the class of max-stable processes called multivariate maxima of moving

maxima processes or simply M4 processes, introduced by Smith and Weissman [6], is particularly well

adapted to modeling the extreme bahaviour of several time series.

To illustrate the generalized madogram given in (2) we will now define an M4 random field.
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Lets consider that the distribution of (Zx1, . . . , Zxp) is characterized by the copula

C(ux1 , . . . , uxp) =

+∞∏

l=1

+∞∏

m=−∞

∧

x∈{x1,...,xp}

ualmx

x
, uxi

∈ [0, 1], i = 1, . . . , p,(4)

where, for each x ∈ Z
2, {almx}l≥1,m∈Z are non-negative constants such that

+∞∑

l=1

+∞∑

m=−∞

almx = 1. This

random field Z is max-stable, since, for each t > 0, the copula (4) satisfies

Ct(ux1, . . . , uxp) = C(ut
x1

, . . . , ut
xp

),

for any locations x1, . . . ,xp.

As the M4 process considered in Weissman and Smith [6], we can consider that for each location

x, Zx is a moving maxima of variables Xl,n, i.e.,

(5) Zx = max
l≥1

max
−∞<m<+∞

almxXl,1−m, x ∈ Z
2,

where {Xl,n}l≥1,n∈Z is a family of independent unit Fréchet random variables. The dependence struc-

ture of (Zx1 , . . . , Zxp) is regulated by the signatures patterns almx and is given by (4).

For each pair of regions x = {x1, . . . ,xk} and y = {yk+1, . . . ,yk+s} we have

Vx,y(z1, . . . , zk, zk+1, . . . , zk+s) = − ln C(e−z−1
1 , . . . , e−z−1

k+s)

=
+∞∑

l=1

+∞∑

m=−∞

k+s∨

i=1

z−1
i almxi

, zi ∈ IR, i = 1, . . . , k + s,

and consequently, for α > 0 and β > 0 we obtain

Vx,y(α, . . . , α, β, . . . , β) =

+∞∑

l=1

+∞∑

m=−∞

(
k∨

i=1

α−1almxi
∨

k+s∨

i=k+1

β−1almxi

)
.

To illustrate the computation of the generalized madogram we shall consider, in what follows,

examples with a finite number of signature patterns (1 ≤ l ≤ L) and a finite range of sequencial

dependencies (M1 ≤ m ≤ M2).

Example 4.1 Lets consider that for each location x ∈ Z
2 with even coordinates we have

a11x = a12x = 1
2 and otherwise a11x = 1

4 = 1 − a12x. The values of (a11x, a12x) determine the moving

pattern or signature pattern of the random field, which in this case corresponds to one pattern (L = 1).

For the disjoint regions of locations x = {(2, 1), (2, 2)} and y = {(3, 3), (3, 4)} we have

Vx,y(α,α, β, β) =
1

4
(2α−1 ∨ β−1) +

3

4
(α−1 ∨ β−1)

and therefore, the generalized madogram in this pair of locations is given by

να,β(x,y) =
1
4 (2α−1 ∨ β−1) + 3

4(α−1 ∨ β−1)

1 + 1
4(2α−1 ∨ β−1) + 3

4 (α−1 ∨ β−1)
−

1

2

(
5
4

α + 5
4

+
1

β + 1

)
, α > 0, β > 0.

Example 4.2 Lets now assume that for each location x = (i, j) ∈ Z
2, a11x = 1

4 = 1 − a12x if i ≤ j

and a11x = 3
4 = 1 − a12x if i > j.

As in the previous example the M4 random field generated by these sequences has a single

signature pattern. Considering now two disjoint regions of locations with different size, x = {(1, 1)}

and y = {(3, 2), (3, 3), (4, 3)}, we obtain

Vx,y(α, β, β, β) =
1

4
(α−1 ∨ 3β−1) +

3

4
(α−1 ∨ β−1)
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and consequently

να,β(x,y) =
1
4 (α−1 ∨ 3β−1) + 3

4(α−1 ∨ β−1)

1 + 1
4(α−1 ∨ 3β−1) + 3

4 (α−1 ∨ β−1)
−

1

2

(
1

α + 1
+

3
2

β + 3
2

)

, α > 0, β > 0.

Example 4.3 As stated in Zhang and Smith [8], in a real data generating process it is unrealistic to

assume that a single signature pattern would be sufficient to describe the shape of the process every

time it exceeds some high threshold. Hence, we shall now consider one example with two signature

patterns (L = 2).

Lets assume that for each location x = (i, j) we have a11x = a12x = a13x = 1
12 ,

a21x = a22x = a23x = 1
4 if both coordinates are odd and a11x = 1

18 , a12x = 1
9 , a13x = 1

6 ,

a21x = a22x = a23x = 2
9 otherwise. Now the values of (a11x, a12x, a13x) and (a21x, a22x, a23x) define

the two signature patterns of the random field.

For two disjoint regions x = {(2, 1), (2, 2)} and y = {(2, 3), (3, 3)} we now have

Vx,y(α,α, β, β) =

(
α−1 1

18
∨ β−1 1

12

)
+

1

9

(
α−1 ∨ β−1

)
+

1

6

(
α−1 ∨ β−1

)
+

(
α−1 2

3
∨ β−1 3

4

)

and consequently

να,β(x,y) =

(
α−1

18 ∨ β−1

12

)
+ (α−1∨β−1)

9 + (α−1∨β−1)
6 +

(
2α−1

3 ∨ 3β−1

4

)

1 +
(

α−1

18 ∨ β−1

12

)
+ (α−1∨β−1)

9 + (α−1∨β−1)
6 +

(
2α−1

3 ∨ 3β−1

4

)

−
1

2

(
1

α + 1
+

10
9

β + 10
9

)
, α > 0, β > 0.

These examples will be used in the following simulation studies to assess the performance of the

estimator given in (3). The figures 1., 2. and 3. show the simulation results obtained by generating

50 replications of 100 independently and identically distributed max-stable M4 random fields in the

three situations previously presented, with α and β taking values in {0.01, k × 0.5 : k = 1, . . . , 40}.

The performance of the estimator ̂̂ν
α,β

(x,y) is given by the estimated mean square error.

The estimator ̂̂ν
α,β

(x,y) gives estimates quite close to the theoretical value. The largest mean

square errors are obtained when α = β.

να,β (x, y) ̂̂να,β
(x, y) MSE

Figure 1: Simulation results obtained with Example 4.1 (x = {(2, 1), (2, 2)}, y = {(3, 3), (3, 4)}) for the true

values of the generalized madogram (να,β(x,y)), the estimated values (̂̂ν
α,β

(x,y)) and the estimated mean

squared error (MSE).
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να,β (x, y) ̂̂να,β
(x, y) MSE

Figure 2: Simulation results obtained with Example 4.2 (x = {(1, 1)}, y = {(3, 2), (3, 3), (4, 3)}) for the true

values of the generalized madogram (να,β(x,y)), the estimated values (̂̂ν
α,β

(x,y)) and the estimated mean

squared error (MSE).

να,β (x, y) ̂̂να,β
(x, y) MSE

Figure 3: Simulation results obtained with Example 4.3 (x = {(2, 1), (2, 2)}, y = {(2, 3), (3, 3)}) for the true

values of the generalized madogram (να,β(x,y)), the estimated values (̂̂ν
α,β

(x,y)) and the estimated mean

squared error (MSE).
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