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Introduction

Web search engines or microarray laboratory devices, among other new technologies, produce
very long lists of distinct items or objects in rank order. The statistical task is to identify common
top-ranking objects from two or more lists and to form sublists of consolidated items. In each list, the
rank position might be due to a measure of strength of evidence, to a preference, or to an assessment
either based on expert knowledge or a technical device. For each object, it is assumed that its rank
assignment in one list is independent of its rank assignments in the other lists. The ranking is from
1 to N , without ties. Starting with the work of Mallows (1957), there is a substantial model-based
literature on problems in combining rankings where the number of items N is relatively small, and
significantly less than the number ` of assessment mechanisms. These parametric approaches cannot
handle data of the type described above. Moreover, we are interested in problems where the reliability
of rankings breaks down after the first (top) k objects due to error or lack of discriminatory information.
Hence, we need distribution-free, and at the same time computationally highly efficient, approaches
because list aggregation by means of brute force is limited to the situation where both N and ` are
impractically small.

Here, we present a non-parametric inference procedure that allows us to test for random degen-
eration of paired rankings (Hall and Schimek, 2010) even under m-dependence of the assignments. The
size of a reliable consensual sub-list obtained in this manner depends on various technical parameters
to cope with irregular and incomplete rankings, typical for real data. This exploratory inference tool
can provide the necessary input for rank aggregation procedures (Schimek, Mysickova, and Budinska,
2010). Here, our focus is on statistical graphics for data integration based on the estimated k’s. The
inference and the graphical procedures as well as others for rank aggregation were implemented in
the R package TopKLists (for a description see Schimek et al., 2011). Two examples illustrate the
capabilities of this new methodology.

Inference for top-k lists

Hall and Schimek (2010) have developed a computationally efficient moderate deviation-based
inference procedure for random degeneration in paired rank lists. This non-parametric procedure gives
an estimate of the point of degeneration j0, where j0 − 1 = k is the length of the top list. It allows
for various types of rank irregularities, missing rank assignments, and list lengths in the magnitude
of thousands of objects. Overlap of rank positions in two input lists is represented by a sequence of
indicators, where Ij = 1 if the ranking, given by the second assessor to the object ranked j by the first
assessor, is not more than δ index positions distant from j, and otherwise Ij = 0. The variables Ij

are assumed to follow a Bernoulli random distribution. This implies independence which is motivated
by k ¿ N and a strong random contribution due to irregular assessments in real data. However, Hall
and Schimek (2010) could show that their theoretical results also hold for m-dependence instead of
complete independence.
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Figure 1: The inference concept to obtain ` truncated consensual lists from ` full ranked lists.

For the Bernoulli random variables I1, . . . , IN , it is assumed that pj ≥ 1
2 for each j < j0,

and pj = 1
2 for j ≥ j0, and in addition, a “general decrease” of pj for increasing j that does not

have to be monotone. The index j0 is the rank position where the consensus information of the two
lists, representing the same set of objects, degenerates into noise (degradation of information). The
estimation of ĵ0 is achieved via a moderate deviation-based approach. In theoretical analysis of the
probability that an estimator, computed from a pilot sample size ν, exceeds a value z, the deviation
above z is said to be a moderate deviation if its associated probability is polynomially small as a
function of ν, and to be a large deviation if the probability is exponentially small in ν. In regular
cases, the values of z = zν that are associated with moderate deviations are

zν ≡ (C ν−1 log ν)1/2,

where C > 1
4 . The null hypothesis H0 that pk = 1

2 for ν consecutive values of k, versus the alternative
H1 that pk > 1

2 for at least one of the values of k, is rejected if and only if p̂±j − 1
2 > zν . The

quantities p̂+
j and p̂−j represent estimates of pj computed from the ν data pairs I` for which ` lies

immediately to the right of j, or immediately to the left of j, respectively. Under H0, the variance of
p̂±j equals (4ν)−1 hence, we can evaluate the above inference procedure in practice. However, apart
from the pilot sample size ν and the constant C (the latter defaults to 0.251), statistical test results
also depend on the distance δ (see next section).

The above described complex decision problem is solved via an iterative algorithm, adjustable
for irregularity in the rankings. It is executed for all (`2− `)/2 pairs of input lists Li, thus we obtain `

values k̂j (j = 1, 2, . . . , `). In Figure 1, our strategy is outlined for the calculation of an overall index
k∗ (a function of the individual k’s from the ` lists Li, e.g. their maximum). Having obtained such
an overall index, we arrive at truncated lists Ti, either aggregated by graphical means as described in
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Table 1: Example of two rankings of N = 15 objects. The data streams and the sums of zeros for
increasing δ values are displayed.
Obj. L1 L2 δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7 δ = 8 · · · δ = 14
o1 1 1 1 1 1 1 1 1 1 1 1 · · · 1
o2 2 8 0 0 0 0 0 0 1 1 1 · · · 1
o3 3 5 0 0 1 1 1 1 1 1 1 · · · 1
o4 4 3 0 1 1 1 1 1 1 1 1 · · · 1
o5 5 2 0 0 0 1 1 1 1 1 1 · · · 1
o6 6 4 0 0 1 1 1 1 1 1 1 · · · 1
o7 7 6 0 1 1 1 1 1 1 1 1 · · · 1
o8 8 7 0 1 1 1 1 1 1 1 1 · · · 1
o9 9 13 0 0 0 0 1 1 1 1 1 · · · 1
o10 10 11 0 1 1 1 1 1 1 1 1 · · · 1
o11 11 9 0 0 1 1 1 1 1 1 1 · · · 1
o12 12 12 1 1 1 1 1 1 1 1 1 · · · 1
o13 13 14 0 1 1 1 1 1 1 1 1 · · · 1
o14 14 10 0 0 0 0 1 1 1 1 1 · · · 1
o15 15 15 1 1 1 1 1 1 1 1 1 · · · 1

#(0) 12 7 4 3 1 1 0 0 0 · · · 0

the following or by stochastic rank aggregation (not considered here; for an overview see Lin, 2010).

Graphical δ selection

The input for the moderate deviation-based inference procedure is a sequence of I’s, taking
either zero or one, forming a data stream representing the concordance of the paired ranks of an
object o. The data stream depends on some distance δ. The parameter δ is defined by the shift in
index positions of a particular object o in one list, say Li, with respect to the other list, say Lj . This
means that we assume concordance (i.e. I = 1) for an arbitrary object characterized by rank positions
in Li versus Lj , maximal δ index values apart.

For the identification of an appropriate δ in real data analysis, we suggest the following strategy:
Compute all data streams for δ ∈ [0, 1, 2, . . . , N − 1]. Order the data stream vectors column-wise
according to increasing δ values. In this way, we obtain a N × N matrix ∆. The ordered sequence
of column sums (i.e. the #(0) for δ ∈ [0, 1, 2, . . . , N − 1]) is the information we take advantage of in
the so-called ∆-plot. It represents the reduction of discordance as a function of δ. When all column
sums remain zero, complete concordance is attained. A reasonable choice of the distance parameter
is associated with a distinct decline of the #(0)’s. Of course, prior information about the ranking
mechanisms involved and the nature of the data is also relevant for the selection of δ. In Table
1, we display a toy example consisting of N = 15 objects in two rankings L1 and L2 (no missing
assessments). As can be easily seen, δ = 7 would be a good choice (a reduction of 5 from the previous
count #(0)=12). For an example of a ∆-plot see Figure 2.

Graphical integration of partial lists

Our goal is to identify a subset of objects oj that is characterized by high rank conformity across
the lists. From the truncation procedure of Hall and Schimek (2010), we obtain (`2 − `)/2 values k̂j

for a pre-specified distance parameter δ. For the integration of all ` truncated lists Ti of individual
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lengths k̂i, we introduce a heatmap-like graph called aggregation map. A consolidated result based on
irregular rankings can never be unique, hence we need such a tool. Let us have an index p = 1, 2, . . ..
We combine ` − 1 aggregation levels (groupings of partial lists) in one display: For each group of
` − p truncated lists down to the smallest group consisting of just one pair of lists, we (i) select an
arbitrary reference list L0 under the condition that it comprises maxi(k̂i) objects among all pairwise
comparisons in the group of rankings, (ii) print the names of its maxi(k̂i) objects vertically from the
highest to the lowest rank position, and (iii) add the aggregation information for all remaining `− p

rankings (pairwise list combinations) in the group, ordered according to descending list length.

Table 2: Universum dataset of world’s most attractive employers: rankings from the 2010 and 2009
global attraction index (sublists comprising 25 out of 50 published rank positions; NA’s denote index
values ranked lower than 25). In boldface are the two estimated top list lengths k̂ of the employers’
ranking.

Object Rank 2010 Rank 2009
Google 1 1
KPMG 2 8

Ernst & Young 3 5
PricewaterhouseCoopers 4 2

Deloitte 5 10
Procter & Gamble 6 6

Microsoft 7 3
The Coca-Cola Company 8 13

J. P. Morgan 9 7
Goldman Sachs 10 4

L’Oréal 11 14
BMW 12 12
Sony 13 16

Johnson & Johnson 14 18
The Boston Consulting Group 15 11

McKinsey & Company 16 9
Morgan Stanley 17 15

Apple 18 NA

IBM 19 17
Deutsche Bank 20 19

Nestlé 21 24
Bank of America–Merrill Lynch 22 NA

IKEA 23 NA

adidas 24 NA

Accenture 25 23

The aggregation information per group and object consists of two measures represented by
colored triangles outlined in an array, (1) membership in the top-k list, yes is denoted by the color
’grey’ and no by the color ’white’, (2) distance of the rank of an individual object o ∈ L0 from
its position in the other list, visualized by means of a color scale from ’red’ identical to ’yellow’ far
distant. In addition, an integer value gives the numerical distance between the object’s rank positions,
a negative sign means ranked lower, and a positive sign means ranked higher in L with respect to L0.
For an example see Figure 3.
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Two examples

Top ranking of world’s most attractive employers: Universum, an employer branding firm,
has conducted a survey for the second time to find the internationally most attractive employers
based on about 130,000 career seekers (final year students of business and engineering from leading
schools in the world). It calculates global talent attraction indices for business and for engineering
graduates. These indices are transformed into ranked lists (only the first 50 companies are made
publicly available; www.universumglobal.com/top50). Here, we focus an the business dataset and
wish to identify a top-k list of brand names (objects) for the two consecutive years 2009 and 2010
(from a 2010 perspective, i.e. reference). The first 25 objects and their respective rankings are shown
in Table 2.

It is reasonable to apply the Hall and Schimek (2010) algorithm because it can cope with the
obvious correlation (m-dependence) of the rankings belonging to consecutive years. Before we can
execute the inference procedure, we need to prespecify the distance parameter δ. Figure 2 depicts the
∆-plot. The first index where lack of concordance is starting to degrade takes a value of seven (see
the subplot in the top right corner). Hence, δ = 7 is an adequate choice to perform list truncation.
The smallest appropriate pilot sample size is ν = 4 (for smaller values the iterative procedure does not
converge). We obtain a point of information degradation of ĵ0 = 14. This means that the top ranked
list consists of k̂ = 13 consolidated brand names. For a slightly larger ν = 10 to account for additional
irregularity in the data, we end up with an estimate of ĵ0 = 18 (k̂ = 17). Instead of Sony, the top-k
list ends with Morgan Stanley. This makes sense because Apple is a newcomer in the 2010 ranking
and its new high-rank position drastically violates the rank conformity we evaluate here. Moreover,
there are other companies, ranked a little bit lower than Apple, presenting themselves as movers from
a distant position (see the NA’s in Table 2).
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Figure 2: ∆-plot for the Universum data.

Integration of findings from microarray experiments: In Popovici et al. (2009), rankings
of gene expression data from several large microarray studies were aggregated. Their goal was to
identify a short list of control genes typical for cancer in general. Here we re-analyse three lists
representing breast, prostate, and colon cancer, each of length N = 10, 000. First, we execute the
inference procedure for all pairwise combinations of the three input lists as described in Figure 1.
As a consequence, lists are truncated at the overall index k∗ = 65 for δ = 10 and ν = 10. Then,
we integrate the obtained truncated lists by graphical means in an aggregation map (maximum of
(k∗ + δ) = 75 objects displayed). The result is given in Figure 3. It becomes immediately clear that
there is considerable overlap between the three truncated lists (indicated by the frequency of lower
grey triangles), although stronger between prostate and breast. Gene RPL39 is an outlier with respect
to colon cancer (denoted by a yellow upper triangle). The control genes selected in this way could all
be biologically verified (for more details of our analysis see Schimek et al., 2011).
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δ = 10, ν  = 10
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Figure 3: Microarray cancer data example: the aggregation map result of three truncated lists.

Conclusions

The described methodology for the calculation of top-k lists is exploratory, rather than a mech-
anism for putting a precise numerical value on a concise quantity, hence it cannot be compared to a
formal test. Our goal is to offer applied statisticians a unified approach to the integration of ranked
lists, and to prevent them from the common misconception that inference on and aggregation of sev-
eral rankings is limited to a single unique solution. Conformity of two or more lists does not only
depend on the assessment techniques but also on the structural relationship between the rankings such
as distance and the stochastic nature of irregularities. As a direct consequence, several aggregation
results can be obtained for one dataset. In most application fields, the consolidated outcome needs to
be verified by human experts. This cannot be done without visualization tools. Such tools have been
lacking so far, the aggregation map is a first attempt in this direction. To the benefit of the statistics
community all the methods described here were implemented in the R package TopKLists on CRAN.
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