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1 Introduction

Let X1, X2, . . . , Xn, . . . be a sequence of independent and identically distributed real random variables
with zero mean and finite variance. For a > 0, the probability P (Xn ≥ a) converges to 0. More
precisely, we have the following logarithmic equivalent for this deviation probability :

lim
n→∞

1
n

log P (Xn ≥ a) = −I(a),

where I is the Fenchel-Legendre dual of the cumulant generating function of X1 (I is usually called the
rate function). This result is a consequence of the large deviation principle (LDP) satisfied by Xn and
gives only an asymptotic equivalent for log P (Xn ≥ a) (for the general definition of a large deviation
principle, we refer to [6]). In some cases, one may want to get asymptotic expressions for P (Xn ≥ a).
Bahadur and Rao [1] were among the first to establish such expressions for the sample mean. Such
results are referred to as strong large deviation results (see Chaganty and Sethuraman [4]).

In addition to the theorems of [1] and [4] (who generalized the Bahadur-Rao Theorem on the
sample mean to an arbitray sequence of random variables), several results pertaining to strong large
deviations in asymptotic statistic can be found in the literature. Blackwell and Hodges [2] treated
the lattice case of the Bahadur-Rao result on the sample mean. Generalizing the Bahadur-Rao result,
Book [3] obtained a strong large deviation theorem for weighted sums of i.i.d. random variables.
Chaganty and Sethuraman [5] proved a multidimensional version of their earlier result.

This paper provides strong large deviation results for an arbitray sequence of random variables
Zn. Some assumptions on the normalized cumulant generating function are assumed. We consider
both the case where Zn is absolutely continuous (or its distribution has an absolutely continuous
component) and the case where Zn is lattice-valued. Our results require, in particular, an asymptotic
expansion of the normalized cumulant generating function. The proofs use techniques from [1] and
[4] who also obtained strong large deviation theorems for an arbitrary sequence of random variables
Tn. Note, however, that their large deviation expressions cannot generally be computed explicitly in
a general frame. That is, one cannot (generally) derive an explicit asymptotic expression for the tail
probability P (Tn ≥ c) that is a function of n. We illustrate some of our theorems with several statistical
applications : the sample variance, the Wilcoxon signed-rank statistic and the Kendall’s tau statistic.
The paper is organized as follows. In Section 2, we introduce the framework and assumptions, before
giving the main results and discussing the statistical applications. Section 3 deals with the lemmas
needed for the proofs of the main results which are deferred to Section 4.

2 Main Results

2.1 Notation and assumption

Let Zn be a sequence of random variables and let bn be a sequence of real positive numbers such that
limn→∞ bn = ∞. Let φn be the moment generating function (m.g.f.) of bnZn,

φn(t) = E{exp(tbnZn)}, t ∈ R,
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and let ϕn be the normalized cumulant generating function (c.g.f.) of Zn,

ϕn(t) = b−1
n log E{exp(tbnZn)}.

Assume that there exists a differentiable function ϕ in ]−α, α[, α > 0, such that limn→∞ ϕn(t) = ϕ(t),
for all t ∈]−α, α[. Let a be a real such that |a−ϕ′(0)| > 0 and there exists τa ∈ {t ∈ R : 0 < |t| < α},
such that ϕ′(τa) = a. The parameter τa is used to make an exponential change of measure which
allows to sharpen the large deviation result (see the proofs in Section 4).
This paper deals with strong large deviation results for Zn, by obtaining an asymptotic equivalent
for the tail probability P (Zn ≥ a), where a > ϕ′(0) (the real a does not necessarily depend on n).
We distinguish the cases where Zn is absolutely continuous (or its distribution has an absolutely
continuous component) and Zn is lattice-valued. To establish the strong large deviation results, we
need to assume several assumptions, in particular on the (normalized) c.g.f. ϕn and on the m.g.f φn :

(A.1) The c.g.f ϕn is an analytic function in DC := {z ∈ C : |z| < α}, and there exists M > 0 such
that |ϕn(z)| < M for all z ∈ DC and n large enough.

(A.2) There exist α0 ∈]0, α − τa[ and a function H such that for each t ∈]τa − α0, τa + α0[ and for n

large enough,

ϕn(t) = ϕ(t) + b−1
n H(t) + o

(
b−1
n

)
,(1)

where the function ϕ is three times continuously differentiable in ]τa − α0, τa + α0[, ϕ′′(τa) > 0,
and H is continuously differentiable in ]τa − α0, τa + α0[.

(A.3) There exists δ0 > 0 such that

sup
δ<|t|≤λ|τa|

∣∣∣∣
φn(τa + it)

φn(τa)

∣∣∣∣ = o

(
1√
bn

)
,

for any given δ and λ such that 0 < δ < δ0 < λ.

Assumption (A.1) is needed in the proof of Lemma 3.2, where we make use of Cauchy’s inequality
to bound the remaining term of a Taylor expansion. Assumption (A.2) guarantees the existence of
an asymptotic expression for the (normalized) cumulant generating function. This assumption is
necessary to establish the strong large deviation results with rate functions that do not depend on
n. It is also used to prove Lemma 3.1 and Lemma 3.2. Assumption (A.3) is a version of Condition
3.16 of [4]. It implies a necessary condition on the characteristic function of the random variable Vn

(defined in (6)) and is required to apply Theorem 2.3 in [4] (see the proof of Theorem 2.1 in Section
4). It plays a similar role to that of the Cramer’s condition.

2.2 Theorems

In what follows, we give the main results. The first theorem deals with the case of absolutely continuous
variables.

Theorem 2.1 Assume that Zn is absolutely continuous (or its distribution has an absolutely contin-
uous component). Let a be a real such that a > ϕ′(0) and let assumptions (A.1)− (A.3) hold. Then,
for n large enough,

P (Zn ≥ a) =
exp(−bnϕ∗(a) + H(τa))

σaτa(2πbn)1/2
[1 + o(1)](2)

where τa > 0 is such that ϕ′(τa) = a. Further, ϕ∗(a) = τaa− ϕ(τa) and σ2
a = ϕ′′(τa).
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Now let us consider the case where bnZn is lattice. Recall that a random variable Y is said to
be lattice if it takes values in a subset of the lattice set {d0 + ks, k ∈ Z}. The real d0 is called the
displacement and the positive real s is the span of Y . Denote by dn and sn the displacement and the
span of the statistic bnZn, respectively. The following assumption is required and replaces (A.3) (see
[4]) :

(A′.3) There exists δ1 > 0 such that for 0 < δ < δ1

sup
δ≤|t|≤π/sn

∣∣∣∣
φn(τa + it)

φn(τa)

∣∣∣∣ = o

(
1√
bn

)
.

The next theorem assumes that the span sn goes to zero as n → ∞. As noted in [4, Remark 3.4], in
this case, Assumption (A′.3) implies Assumption (A.3). Thus we obtain the same results as those of
Theorem 2.1.

Theorem 2.2 Let assumptions (A.1)− (A.2) and (A′.3) hold. Assume that the span sn of the lattice-
valued random variable bnZn goes to zero as n tends to infinity. Then, for a > ϕ′(0) and for n large
enough,

P (Zn ≥ a) =
exp(−bnϕ∗(a) + H(τa))

σaτa(2πbn)1/2
[1 + o(1)]

where τa > 0 is such that ϕ′(τa) = a. Further, ϕ∗(a) = τaa− ϕ(τa) and σ2
a = ϕ′′(τa).

2.3 Examples

We present three examples to illustrate the theorems of the preceding section.

Example 1. The sample variance. We consider the sample variance. This statistic has the
following well known expression :

Zn =
1

n− 1

n∑

i=1

(Xi −X)2.

Assuming that the Xi’s have a normal distribution N (µ;σ2), σ2 > 0, we know that σ−2 ∑n
i=1(Xi−X)2

follows a chi-square distribution with n−1 degrees of freedom. A probability of large deviation for the
sample variance was studied by Sievers [9]. Here, we give a strong large deviation result by applying
Theorem 2.1 (with bn = n).

Corollary 2.1 Let Zn be defined as above. Then for a real a such that a > σ2 and n large enough,

P (Zn ≥ a) =
exp(−(n + 1)ϕ∗SV (a))

σ(4aπn)1/2
[1 + o(1)],(3)

where ϕ∗SV (a) = 1
2

(
a
σ2 − log

(
a
σ2

)
− 1

)
> 0.

Example 2. The Wilcoxon signed-rank statistic. A large deviations result for the Wilcoxon
signed-rank statistic was obtained by Klotz [8]. The asymptotic expression (4) will follow from Theo-
rem 2.2 (with bn = n).
Let {X1, . . . , Xn} be a sequence of i.i.d. continuous random variables having distribution function F

and let Ri be the rank of |Xi|, i = 1, . . . , n. In other words, if one arranges |X1|, |X2|, . . . , |Xn| in
increasing order of magnitude, Ri denotes the rank of |Xi|. Assume that the random variables Xi are
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symmetric about their median m. The Wilcoxon signed-rank statistic Wn is defined as the sum of the
quantities Ri corresponding to the positive X ′

is, that is,

Wn =
n∑

i=1

I{Xi>0}Ri.

The statistic Wn is used to test the null hypothesis H0 : m = 0, and can also be written as :

Wn =
∑

1≤i≤j≤n

I{ 1
2
(Xi+Xj)>0}.

Letting Zn = Wn
n2 , we have the following result.

Corollary 2.2 Let Zn be defined as above. Then for a real a > 1/4 and n large enough,

P (Zn ≥ a) =
exp(−nϕ∗W (a) + HW (τa))

σa(2πn)1/2
[1 + o(1)](4)

where τa > 0, is such that
∫ 1
0

x
1+exp(−τax)dx = a, HW (t) = 1

2 log
(

exp(t)+1
2

)
and σ2

a =
∫ 1
0

x2 exp(τax)
(1+exp(τax))2

dx.
Further, ϕ∗W (a) = τaa− ϕW (τa) where

ϕW (t) =
∫ 1

0
log

(
etx + 1

2

)
dx.

Example 3. The Kendall’s tau statistic. Sievers [9] gave a large deviation result for this non-
parametric test of independence. An application of Theorem 2.2 (with bn = n) will yield the strong
large deviation result (5). Let {(X1, Y1), . . . , (Xn, Yn)} be a sequence of i.i.d. continuous random
couples having distribution function F (x, y) and let FX and FY be the marginal distributions. The
Kendall’s tau statistic Zn can be defined as follows :

Zn = 2
∑

1≤i<j≤n

(I{Xi≥Xj} − I{Xi≤Xj})(I{Yi≥Yj} − I{Yi≤Yj})
n(n− 1)

.

It was first used by Kendall to test the null hypothesis H0 : F (x, y) = FX(x)FY (y), for all x, y. We
have the following corollary.

Corollary 2.3 Let Zn be defined as above. Then for a real a ∈]0, 1[ and n large enough,

P (Zn ≥ a) =
exp(−nϕ∗K(a) + HK(τa))

σa(2πn)1/2
[1 + o(1)](5)

where τa > 0 is such that 1− 1
τa

+ 4
∫ 1
0

x
exp(4τax)−1dx = a,

HK(t) = 2t− 1 +
3
2

log(1− e−4t)− 1
2

log(4t)−
∫ 1

0
log(1− e−4tx)dx

and

σ2
a =

1
τ2
a

− 16
∫ 1

0

x2 exp(4τax)
(exp(4τax)− 1)2

dx.

Further, ϕ∗K(a) = τaa− ϕK(τa), where

ϕK(t) = t + 1− log(4t) +
∫ 1

0
log(1− e−4tx)dx.
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3 Lemmas

In this section, we present two lemmas needed for the proofs of Theorems 2.1 and 2.2 (the proofs of
these lemmas will be omitted). To do so we first introduce some notation. Denote the distribution
function of bnZn by Kn. Let a be a real such that a > ϕ′(0) and there exists τa ∈]0, α[ satisfying
ϕ′(τa) = a. Using an exponential change of measure, let

Hn(u) =
∫

−∞<y<u
exp(yτa − bnϕn(τa))dKn(y)

be the distribution function of bnZ∗n. Define the random variable Vn as follows :

Vn =
√

bn(Z∗n − a)
σa

,(6)

where we recall that σ2
a = ϕ′′(τa) > 0 (Assumption (A.2)). The following lemma shows the asymptotic

normality of Vn.

Lemma 3.1 Let Assumption (A.2) hold. Then, the statistic Vn converges in distribution to a standard
normal random variable.

The proof of the next lemma is similar to that of [4, Lemma 3.1] (in particular, we make use of
[4, Theorem 2.6]).

Lemma 3.2 Let fn be the characteristic function of Vn and assume that assumptions (A.1) − (A.2)
are satisfied. Then, there exist δ > 0, γ > 0 and n0 ∈ N∗ such that,

sup
n≥n0

|fn(t)|I(|t| ≤ δ
√

bnσa) ≤ exp(−γt2).(7)

4 Proofs

We give the proofs of the theorem of Section 2.

Proof of Theorem 2.1. The beginning of the proof of (2) follows the same lines as in [1]. Let
a > ϕ′(0). We can write the Fenchel-Legendre transform of ϕ as follows :

ϕ∗(a) := sup
t∈R

{ta− ϕ(t)} = τaa− ϕ(τa),

where τa ∈]0, α[ is such that ϕ′(τa) = a. Recall that nU∗
n is a random variable with distribution

function
Hn(u) =

∫

−∞<y<u
exp(yτa − bnϕn(τa))dKn(y).

Using Assumption (A.2), the right tail probability may now be written as follows :

P (Zn ≥ a) = E{exp(−τabnZ∗n + bnϕn(τa))I{Z∗n≥a}}
= exp(bnϕn(τa)− bnτaa)E{exp(−τabn(Z∗n − a))I{Z∗n≥a}}
= exp(bnϕn(τa)− bnτaa)E{exp(−τaσa

√
bnVn)I{Vn≥0}}

= ebn(ϕ(τa)−τaa)+H(τa)+o(1)E{exp(−τaσa

√
bnVn)I{Vn≥0}}

= e−bnϕ∗(a)+H(τa)E{exp(−τaσa

√
bnVn)I{Vn≥0}}(1 + o(1))

where

Vn =
√

bn(Z∗n − a)
σa

and σa =
√

ϕ′′(τa) > 0.
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It remains to prove that

lim
n→∞ τaσa

√
bnE{exp(−τaσa

√
bnVn)I{Vn≥0}} =

1√
2π

.(8)

To do this, we will apply [4, Theorem 2.7] to the sequence of random variables {Vn, n ≥ 1}. Lemma 3.1
and Lemma 3.2 show that Vn converges in distribution to a standard normal variable and that (7)
holds, respectively. Besides, it is easy to see that

sup
δ
√

bnσa<|t|≤λτaσa
√

bn

|fn(t)| = sup
δ<|t|≤λτa

∣∣∣∣
φn(τ + it)

φn(τ)

∣∣∣∣ ,

where fn is the characteristic function of Vn and φn the m.g.f. of bnZn. Hence, by Assumption (A.3),
we have for n large enough,

sup
δ
√

bnσa<t≤λτaσa
√

bn

|fn(t)| = o(b−1/2
n ).(9)

The convergence in distribution of Zn, (7) and (9) allow us to verify the conditions of [4, Theorem
2.3]. Denote the density of Vn (or pseudo density if Vn does not possess a proper density function) by
qn. By [4, Theorem 2.3], there exists a constant M0 > 0 such that

sup
y

qn(y) ≤ M0,(10)

and if zn → z, then

qn(zn) → (
√

2π)−1e−z2/2.(11)

[4, Theorem 2.7] follows directly from (10) and (11). Finally, [4, Theorem 2.7] implies (8), which ends
the proof.

Proof of Theorem 2.2. Theorem 2.2 follows from Theorem 2.1, since Assumption (A′.3) implies
Assumption (A.3) (in view of the fact that sn → 0 as n →∞).
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