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Subnational population estimates and projections are one of the key outputs of national statis-

tical agencies. Local-level information about past and future demographic trends plays a central role

in decisions involving billions of dollars of public and private expenditures. User expectations about

accuracy, timeliness, and detail are high and rising, even as population censuses—the backbone of

subnational population estimation in many countries— come under increasing financial pressure.

Statistical agencies have responded by widening the range of data sources they use. Most of the

traditional sources, such as censuses and vital registration systems, were designed specifically for the

production of demographic statistics. Most of the newer sources, such as tax returns, school rolls, and

building consents, were designed for different purposes entirely. Much ingenuity has been devoted to

the exploitation of these “administrative” data sources. However, current methods are highly labour

intensive and complex, have difficulty coping with noise in the data, and provide little information

about uncertainty.

In this paper we introduce a new Bayesian framework for subnational population estimates and

projections. We draw on a growing literature applying Bayesian methods to demographic problems

(e.g. Alkema et al., 2008; Bijak and Wísniowski, 2010; Brierley et al., 2008; Congdon, 2008; Daponte

et al., 1997; Lynch and Brown, 2010), as well as the general literature on missing data (e.g. Little

and Rubin, 2002). The framework combines the evaluation of data quality, the estimation of histor-

ical demographic rates and counts, the projection of future rates and counts, and the assessment of

uncertainty. We illustrate these ideas with some early results from a project to carry out subnational

population estimation in New Zealand.

A general Bayesian framework for subnational population estimates and projections

We treat subnational population estimates and projections as an attempt to estimate demo-

graphic account Q. A demographic account is a set of population counts, births, deaths, and mi-

grations, disaggregated by region, sex, age, and period (Rees, 1979). All values in an account must

satisfy an accounting identity: the size of any subgroup at the end of a period must equal its size at

the beginning of the period plus entries (e.g. in-migrations) minus exits (e.g. deaths). We treat Q as

a latent construct that cannot be observed directly but must instead be inferred from available data

X. Taking a Bayesian approach to inference, we compute the posterior distribution p(Q|X).

Using parameter vector θ, p(Q|X) can be expanded to

(1) p(Q|X) =

∫
p(X|Q, θ)p(Q|θ)p(θ)dθ.
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Figure 1: A summary of the model used in our application. The ellipses represent unobserved

values, and the rectangles observed values. The solid lines represent probabilitic relationships, and

the dashed lines deterministic relationships. Population, births, deaths, and migration nodes together

make up the demographic account. The top two layers of the diagram, containing the parameter

vector θQ and the demographic account, form the system model. The bottom three layers, containing

the demographic account, the data sources, and parameter vector θX , form the observation model.

The first component of the integrand in (1) is an ‘observation model’ relating observable data to

the state of the demographic system. The second component is a ‘system model’ governing the

evolution of the demographic system. We assume that the observation and system models depend

on distinct components of the parameter vector, meaning that θ = (θXθQ), p(X|Q, θ) = p(X|Q, θX),

p(Q|θ) = p(Q|θQ), and p(θ) = p(θQ)p(θX).

Computation of the posterior distribution of the unknowns, p(Q, θQ, θX |X), is carried out using

a Gibbs sampler. The sampler alternates between the following full conditional distributions:

p(Q|X, θQ, θX) ∝ p(X|Q, θX)p(Q|θQ)(2)

p(θX |X,Q, θQ) ∝ p(X|Q, θX)p(θX)(3)

p(θQ|X,Q, θX) ∝ p(X|Q, θX)p(Q|θQ)p(θQ) ∝ p(Q|θQ)p(θQ).(4)

Application of the framework to subnational population estimation in New Zealand

We have developed specific system and observation models based on the ideas presented above

and used them to carry out subnational population estimation in New Zealand. The models are

summarised in Figure 1.

The system model seeks to capture sufficient demographic detail to yield accurate estimates,

while still being computationally tractable. We distinguish between internal (domestic) migration

and external (international) migration. We use a ‘migration pool’ specification for internal migration,

which is more robust and meaningful than the traditional ‘net migration’ specification, but requires

far fewer parameters than a full ‘multiregional’ specification (Wilson and Bell, 2004). We estimate

separate sub-models for population size, births, deaths, internal in-migration, internal out-migration,

external in-migration, and external out-migration. The parameters for each sub-model are distinct.

However, values for population size appear in the sub-models for births, deaths, and out-migration

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS012) p.4102



in the form of exposure measures. Moreover, any combined draw from the sub-models is given a

probability of zero if the draw violates the accounting identity described above. In practice, use of

exposure measures and the imposition of the accounting constraint induces substantial dependence

between realised values for the demographic series.

Hierarchical Poisson-gamma models (Christiansen and Morris, 1997) are used for each of the

demographic series. Every region-sex-age-period cell in every demographic series is given its own

expected value parameter. These parameters are in turn given hyperparameters capturing region, sex,

age, and period effects. The large number of parameters provides sufficient flexibility that variants of

the same specification can be applied to all series. The hierarchical priors provide sufficient shrinkage

to protect against over-fitting.

The observation model contains a sub-model for each data source. Each sub-model treats values

from the data source as a response and values from the demographic account as a predictor. This re-

verses the normal situation in population estimation whereby the demographic variable is the response

and the data variable is the predictor. This reversal means that limited detail or gaps in the observed

data can be dealt with by aggregating or subsetting the demographic account, rather than splitting

or extrapolating from the data. Aggregating and subsetting are easier than splitting or extrapolating,

so this saves a great deal of work. Consider, for instance, a situation where demographic estimates

are required at the level of the district, but immigration data are only available at the level of the

province. Under current estimation methods, immigrants would somehow need to be allocated to

districts, perhaps by developing some set of splitting factors, or some form of spatial interpolation.

Under our model, the district-level in-migration numbers from the demographic account are simply

aggregated up to the provincial level before predicting provincial immigration data. Similarly, under

current methods, data series that are available for only a few years or age groups require special

treatment, but under our methods do not.

The sub-models for the data sources use essentially the same Poisson-gamma specifications as

the sub-models for the demographic series. These specifications are sufficiently flexible to allow for

the possibility that a data source undercounts some age groups more than others, for instance, or that

a data source becomes more accurate over time.

Projections are constructed simultaneously with historical estimates. The system model in fact

treats future values for demographic series no differently from historical values. The observation model

treats future values for data sources as a form of missing data. All sub-models within the system and

observation models use random walks for period effects, to facilitate projections .

Standard methods exist for updating hierarchical Poisson-gamma models within a Gibbs sam-

pler. Considerable experimentation was required, however, to find a feasible method for updating

demographic account Q. One difficulty is the sheer size of Q, which typically has tens of thousands

or hundreds of thousands of cells. A second difficulty is the constraints imposed by the accounting

identity. It is not possible, for instance, to simply draw from each of the sub-models and reject the

draw if the accounting constraints are not satisfied, since the chance that the constraints would be

satisfied is close to zero. The general solution we adopted was to restrict each update to the com-

bination of (i) a single value, such as deaths in a single region, sex, age group, and period, and (ii)

subsequent population counts would be affected by the change in value. A slightly more complicated

scheme is needed for internal migration. Many terms in the Metropolis-Hastings ratio cancel. We are

careful to take advantage of these cancellations, to speed calculations. Thousands of such updates of

the demographic account are carried out for each update of the Poisson-gamma models.

Application to New Zealand data

We have been applying the framework to the problem of subnational estimation and projection
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Figure 2: Population by age in a single region, males only, 1996, 2001, 2006, and 2009. The solid

black line shows the median estimate and the solid grey lines a 95% credible interval. The dotted line

shows (adjusted) census counts.

in New Zealand. The project includes an evaluation of the effect on estimates and projections of the

cancellation of the 2011 census, following the Christchurch earthquake. At the time of writing, we

have only just developed the software to the point where we can start constructing estimates. The

results presented here should therefore be seen only as illustrative.

We have applied the model to a partly synthetic dataset covering 10 regions, 2 sexes, 101 age

groups, and 14 years. The data sources are summarised in Figure 1. The results shown here are based

on a simulation with two chains, a burn in of 2,500 iterations (where one iteration included 10,000

updates of the demographic account) and a sample of 1,000 iterations, though the sample was thinned,

with only 1 in 4 iterations being recorded. This run was, unfortunately, not long enough for the model

to converge properly, but deadlines did not permit a longer run. The acceptance rate for updates of

the demographic account was 51%.

Figure 2 shows estimated estimated population counts for males, by age, in four different years.

The black lines show the median estimates and the grey lines the 2.5% and 97.5% quantiles. The dotted

lines show census population counts (adjusted undercount, temporary migrants, and demographic

change between the census and reference date). The model has strayed further from the census counts

than we would like, but we suspect that this is simply because the model has not had time to converge

properly. In any case, the figure does provide a typical example of the output that can be obtained

from the model.
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Figure 3: Median width of 95% credible intervals, by year. The vertical lines show census years.

An interesting feature of Figure 2 is the the width of the credible intervals three years out from

a census. Figure 3 provides further results on changes in uncertainty over time. It shows the median

width of credible intervals by year, aggregating across regions, ages, and sexes. The widths increase

and then decrease gently over the two closed census intervals, but grow quickly over the open one.

This finding is suggestive, though it will need to be confirmed by more detailed analysis.

Discussion

Although further work is needed to develop and validate the approach described here, we are

optimistic that it will provide an attractive alternative to current methods for subnational estimates

and projections. Use of a formal statistical model leads to greater transparency, and permits the

automation of many tasks that must currently be carried out by hand. The inclusion of measures of

uncertainty greatly increases the usefulness of the estimates and projections for decision-making. The

structure of the model means that it can exploit numerous data sources, even if these sources produce

noisy, irregular data.
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ABSTRACT

The paper describes a Bayesian framework for carrying out subnational population estimates

and projections. The new methods allow data from multiple noisy data sources to efficiently combined.

They also generate formal measures of uncertainty. The paper provides some illustrative results from

software implementing the methods.
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