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1. Introduction 

For most of the generalized linear models (GLM), the maximum likelihood (ML) equations involve 

nonlinear functions of the parameters; thus, they are intractable. Solving these equations by iterations can be 

problematic for reasons of convergence to wrong values, extremely slow convergence, or non-convergence 

of the iterations. To alleviate these difficulties, Tiku and Vaughan (1997) and Oral (2005, 2006a) derived 

modified maximum likelihood (MML) estimators for logit, log-linear and proportional odds models, 

respectively. In this study, we generalize the estimators given in Tiku and Vaughan (1997) and Oral (2005, 

2006a), and provide explicit solutions that is applicable for all GLMs which use canonical link functions. By 

using real life data sets, we show that the derived estimators are fully efficient for large sample sizes and 

highly efficient for small samples. We also study the robustness properties of these estimators via simulations. 

 

2. Modified Maximum Likelihood Methodology 

The method of MML estimation was originated by Tiku (1967, 1978, 1980) and has been used 

extensively in literature (Tan and Tabatabai, 1988; Tiku and Suresh, 1992; Oral and Gunay, 2004, Oral 

2006b; Oral and Kadilar, 2011). The methodology of MML is employed in situations where the ML 

estimation is intractable. There are three steps to apply the method: (i) express the likelihood equations in 

terms of the order statistics, (ii) replace the intractable functions by their linear approximations such that the 

differences between the two converge to zero as n tends to infinity, and (iii) solve the resulting equations. 

The solutions, called MML estimators (MMLEs), have closed forms, and are therefore easy to compute. A 

rigorous proof is available in Vaughan and Tiku (2000) for the fact that, under some regularity conditions, 

MMLEs have exactly the same asymptotic properties as ML estimators (MLEs), and for small n values they 

are known to be essentially as efficient as MLEs.  

To highlight the methodology, consider the family of skewed distributions 
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where b is the shape parameter. Note that [ ])1()b()X(E ψ−ψσ+µ=  and [ ])1()b()X(V 2 ψ′+ψ′σ= , where 

)x()x()x( ΓΓ′=ψ  is the digamma function and )x(ψ′  is its derivative. For 1b < , 1b =  and 1b > , 

(2.1) represents negatively skewed, symmetric and positively skewed distributions, respectively. Given a 

random sample 
n21

X,...,X,X  from (2.1), we want to estimate the parameters µ  and σ . The MLE of µ  

and σ  are the solutions of the likelihood equations 
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that include nonlinear functions of the parameters, and need to be solved iteratively. However, solving these 

equations by iterations can be problematic for the reasons given above. MML methodology proceeds as 

follows: 

Since complete sums are invariant to ordering, the likelihood equations (2.2)-(2.3) can be re-written in 

terms of the ordered statistics 
)n()2()1(

x...xx ≤≤≤  as 
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where ( ))zexp(1)zexp()z(g
)i()i()i(
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= , ni1 ≤≤  gives 
)i(ii)i(

z)z(g β−α≅ , where 
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 into the likelihood equations (2.4)-(2.5), the modified likelihood equations are obtained as 
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The solutions of (2.6)-(2.7) are the MMLEs which are explicit functions of the observations as given below 
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Remark: In practice, the shape parameter b in (2.1) may not be known. However, one can easily determine 

the value of the shape parameter by constructing several Q–Q plots with the observed values. The Q–Q plot 

that most closely approximates a straight line would be deemed the most appropriate. 
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3. Modified Maximum Likelihood Estimators for Generalized Linear Models  

For a generalized linear model, where Y  is the outcome and Xj ( p,...1j = ) are the explanatory 

variables, the random sample 
n21

Y,...,Y,Y  has a distribution in the exponential family 
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for some specific functions a, b and c. Suppose that φ  is known, so that (3.1) is an exponential family 

model with a canonical parameter 
i

θ  ( ni1 ≤≤ ). If we let 
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the likelihood equations for p,...1j =  can be written as 

 

( )
0)(g

)Y(Var

xyn

1i

1

i

i

ijii
=








µ′

µ−
∑ =

− , 

 

or, equivalently                        

 

( )
0

))(b(g)(b)(a

x)(byn

1i
ii

ijii
=









θ′′θ′′φ

θ′−
∑ =

, for p,...1j = .                                         (3.2) 

 

When the canonical link function is used, equations (3.2) become 
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and do not have explicit solutions. To derive the MMLEs, we assume the mean of the outcome depends on a 

single explanatory covariate X, that is, 
i10i

xγ+γ=θ , ni1 ≤≤ . The likelihood equations for estimating 
0

γ  

and 
1

γ  are written in terms of the ordered statistics 
]i[10)i(

xγ+γ=θ  as 
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where ( )
]i[]i[

x,y  pair is the ( )
ii

x,y  observation (concomitant) which corresponds to 
)i(

θ , ni1 ≤≤ . By 

using the procedure described in Section 2, we obtain the MMLEs as follows: 
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where 
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As an example, for the logistic regression model, since ( )[ ]
iii

1ln µ−µ=θ , ( ))exp(1)exp()(b
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θ+θ=θ′ , 

and ( )2

iii )exp(1)exp()(b θ+θ=θ′′ , 
i

α  and 
i

β  ( ni1 ≤≤ ) values in (3.6) become 
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As another example, for the log-linear model, ( )
ii

ln µ=θ , )exp()(b)(b
iii

θ=θ′′=θ′ ; thus, 
i

α  and 
i

β  

( ni1 ≤≤ ) values in (3.6) become 
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Note that, the initial values of 
)i(

t  can be taken as 
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x~~t γ+γ=  where 
0

~γ  and 
1

~γ  are the least squares 

estimators    
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After the first iteration, the estimators needed to be revised by replacing 
)i(

t  by 
]i[10)i(

xˆˆt γ+γ=  from (3.4). 

This process may be repeated a few times to obtain the final estimates of 
0

γ̂  and 
1

γ̂ .  

 

Examples: To illustrate the methodology, we first analyze the coronary heart disease data given on 

page 3 of Hosmer and Lemeshow (1989). This data represents the values of coronary heart disease (CHD) 

status Y (0 or 1), and the corresponding values of the age X of 100 subjects. We also consider the data given 

on page 82 of Agresti (1996), which is from a study of nesting horseshoe crabs where the response Y is the 

number of satellites that each female crab has, and the corresponding values of the covariate X is the 

carapace width of 173 crabs. Both studies investigate the relationship between Y and X. For both data, we 

calculated the MML estimates from equations (3.4)-(3.6). The calculations given in Table 1 are completely 

consistent with those given in Hosmer and Lemeshow (1989) and Agresti (1996).  

 

Table 1 Estimates for CHD and horseshoe crabs data 

 
 CHD Data Horseshoe crabs Data 

 Coefficient Estimate Coefficient Estimate 

ML 
0

γ  -5.310 
0

γ  -3.3048 

 
1

γ  0.111 
1

γ  0.1640 

 Coefficient Estimate Coefficient Estimate 

MML 
0

γ  -5.309 
0

γ  -3.3047 

 
1

γ  0.111 
1

γ  0.1640 
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4. Robustness Properties of the Estimators 

From a practical point of view, it is very important for an estimator to have efficiency robustness. Such 

an estimator is fully efficient (or nearly so) for an assumed model and maintains high efficiency for plausible 

alternatives. In practice, specifically outliers are a frequently encountered problem in GLM; thus, in this 

section we search the robustness properties of the estimators given in (3.4)-(3.6) with respect to the outliers.  

For illustration, we consider the log-linear model and perform a Monte-Carlo study as follows: We 

assume that 1
0

−=γ , and for three different values of 
1

γ  (0.0, 0.5, and 1.0), we generate (n-r) of the 

n21
X.,..,X,X  observations from the Normal distribution with parameter σ , and the remaining r (we don’t 

know which) from the Normal distribution with parameter σd (d is a positive constant). We calculate r from 

the formula [ ]5.0n1.0r += . We assume that 1,0 =σ=µ  without loss of generality and consider the 

models below: 

 

a) (n-r) come from N(0,1) and r come from N(0,1) (No outliers), 

b) (n-r) come from N(0,1) and r come from N(0,1.5), 

c) (n-r) come from N(0,1) and r come from N(0,2), 

d) (n-r) come from N(0,1) and r come from N(0, 4). 

 

The model (a) above is the model without outliers and is given for sake of comparisons. Note that for each 

model, after generating the X values, we calculated 
i10i

xγ+γ=θ and )exp(
ii

θ=µ  for ni1 ≤≤  to 

generate 
i

Y  values from Poisson(µi). The values obtained from [100000/n] iterations are given in Table 2.  

As can be seen from the table, the biases in the estimates are negligible for all models. The variances )ˆ(V
1

γ  

are almost the same for a given n for the models (a), (b), (c) and (d). We conclude that the MMLEs (3.4)-

(3.6) are fairly robust to outliers. 

 

Table 2 Simulation results for models (a)-(d) 

 

 (a): No Outlier (b): d=1.5 

1
γ  n Bias(

1
γ̂ ) V(

1
γ̂ ) Bias(

1
γ̂ ) V(

1
γ̂ ) 

0 30 0.011 0.119 0.012 0.118 

 50 0.004 0.062 0.006 0.062 

 100 0.005 0.029 0.004 0.029 

0.5 30 0.014 0.112 0.014 0.115 

 50 0.007 0.057 0.004 0.058 

 100 0.002 0.026 0.002 0.026 

1.0 30 0.020 0.098 0.019 0.099 

 50 0.019 0.047 0.007 0.047 

 100 0.004 0.020 0.004 0.019 

 (c): d=2.0 (d): d=4.0 

1
γ  n Bias(

1
γ̂ ) V(

1
γ̂ ) Bias(

1
γ̂ ) V(

1
γ̂ ) 

0 30 0.013 0.120 0.009 0.122 

 50 0.002 0.064 0.008 0.065 

 100 0.005 0.029 0.001 0.028 

0.5 30 0.012 0.113 0.010 0.117 

 50 0.003 0.057 0.005 0.055 

 100 0.000 0.025 0.007 0.024 

1.0 30 0.017 0.098 0.019 0.098 

 50 0.005 0.045 0.009 0.044 

 100 0.005 0.017 0.005 0.016 
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5. Concluding Remarks and Future Work  

The values of the parameters in GLM are usually obtained by ML estimation, which require iterative 

computational procedures. There are many iterative methods for ML estimation in the generalized linear 

models, of which the Newton-Raphson and Fisher scoring methods are among the most widely used ones. 

Using iterative methods, however, can be problematic (Vaughan, 2002; Tiku and Vaughan, 1997). In this 

study, we generalize the estimators given in Tiku and Vaughan (1997) and Oral (2005, 2006a), and provide 

explicit solutions that is applicable for all GLMs which use canonical link functions. We also study the 

robustness properties of these estimators via simulations. We are currently working on generalizing the 

method to multivariable situations and also to the case where )(a φ  in (3.1) is also a parameter. 
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