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1. Introduction

Contemporary computer capacity produces massively large datasets; yet those same computers
can have difficulty analyzing these datasets because of their size. One way to handle this is to aggre-
gate the data according to some meaningful scientific question(s). The resulting datasets are perforce
symbolic-valued (such as intervals, histograms, multi-modal-valued), thus necessitating new method-
ology for their analyses. For example, a census collects information (e.g., age, income, housing costs,
gender, race/ethnicity, etc.) on individuals. These individual values are aggregated according to some
social-scientific question(s) of interest, such as by region, city, state, and so on. Depending on the na-
ture of the original observations and the nature of the aggregation, the data are subsequently recorded
as e.g., histograms over a range of suitable subintervals. Many such datasets in the form of population
pyramids by country (e.g.) can be found at ”census.gov/ipc/www /idb/informationGateway.php”.

We focus on histogram-valued observations. We first consider some distance measures. By
our count, there are about 15 such measures, most developed in the last year or two; see Section 3.
Then, we consider monothetic and polythetic divisive clustering algorithms for clustering histograms
in Section 4. The methodologies are illustrated through the well-known Fisher (1936) Iris dataset.
This gives us a benchmark against which to compare our results using histogram-valued methods.

2. The Data

We have the random variable Y = (Y7,...,Y},) taking values in RP. Suppose we have a sample
of size n observations taking histogram values of the form

(1) YUJ - {[bu_]kabUJ,k+1)7p1L]k7 k= 17" . JSUjJ ] = 17" P, U= 17"‘7”}

where the histogram Y,; consists of s,; subintervals [bujk, buj7k+1) occurring with relative frequency
pujk- Lypically, across observations and variables, the length and number of subintervals will vary.
However, without loss of generality, we can transform the observations into histograms with common
subintervals and the same number of subintervals. Therefore, for all terms in the right-side of (1),
except for the relative frequency term pyjx, the u subscript can be dropped; see Kim and Billard
(2011a) for details.

The Fisher (1936) Iris dataset consists of 50 observations from each of three species (setosa,
versicolor, virginica). There are p = 4 variables, viz., Y1 = Sepal Length, Y, = Sepal Width, Y3 =
Petal Length, and Y;= Petal Width. The observations were aggregated into seven groups of 20 and
the eighth group of 10 observations; histograms were constructed for each variable and each group.
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The resulting histograms for group 1 are provided in Table 1. Groups 1 and 2 comprised irises from the
setosa species, groups 4 and 5 from the versicolor species and groups 6, 7 and 8 were from the virginica
species. Group 3 consisted of 10 observations from each of the setosa and versicolor species. We know
from classical studies of the 150 classical observations that observations from the setosa species are
quite distinct from the other two species which overlap. It might be particularly interesting to see
what happens with group 3.

Table 1 - Iris Histogram Observations

Group | Variable Histogram: {[bjk,bji+1)Pjksk =1,..., 545}

1 Vi {42, 4.4), .10; [44, 46), .10; 8), .15;

[5.0, 2), .15 [52, 54), .15

Ys (2.8, 3.0), .20; |

(3.6, 8), .15; [3.8, 4.0), .15
Vs {11, 1.2), .10; [L2, 1.3), .10;

(1.5, 16), .05 [L6, 1.7, .10}

Y, {[0 10, 0.15), .15; [0.15, 0.20), .50; [0.20, 0.25), .00; [.25, .30), .20;

[.30 .35), .00; [.35, .40], .15}

[ ) [4.8, 5.0), .20;
[ ) 5.6, 5.8 .15}
3.0, 3.2), .15 [3.2, 34) .15 [3.4, 3.6), .15
[ ) [4.2, 4.4], .05}
[ ) (1.4, 1.5), .30

3. Distance-Dissimilarity Measures

As the name suggests, a dis/similarity or distance measure between two observations, u and v
(say, u,v =1,...,n), describes the distance between them in some way; or equivalently describes how
dis/similar they might be. A fundamental distance is the Minkowski distance of order g

1/q

(2) d Zw] (u, v)

where d;(u, v) is a distance measure between u and v for the variable Y; and w; > 0 is a weight
associated with Y;, j = 1,...,p. When ¢ = 2, we have the familiar Euclidean distance. Many different
formulations exist for the distance between two classical observations, i.e., points in RP; see, e.g.,
Gordon (1999) for a comprehensive review.

Since histogram-valued observations are hypercubes in RP, any two observations can overlap. In
order to obtain distance measures between these observations, we first need to define the sample mean
and sample variances of an observation u, the union uUwv and intersection uNv of the histograms u and

v. Thus, for observations (1), we have that the sample means are, respectively, for Y;, j =1,...,p,
55
(3) M,; = Zpujk(bujk + bujrt1)/2,
k=1
t
Puuwv)jk

(4) M(uUU)j = sz(uqu)jk(bjk =+ bj,k+1)/27 p?uu'[})jk —a P(uw)jk = maX{pujk:ypvjk}a
k=1 Zk; 1 P(uw)jk

S5

(5) M(uﬁv Zp uMv ]k(bjk + b] k+1)/2 p (ww)jk = —t;
k=1 > i1 Plurw)jk

Purw)jk .
() y Plurw)jk = mln{pujkyppvjk}§
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and the sample variances for Y; are, respectively,
55
(6) Sai = Zpujk[(bjk — Myj)? + (bjk — Muj) (bj k1 — Mug) + (bjnsr — Muj)?] /3,

(7) S(2UU’U ZP woo)k (O = MU)? + (bjk — MU) (bjpr1 — Mu) + (bj e — Mu)?]/3,
=1
Sj

®)  Sturwy; = D Pkl (b — M) + (bjr — Mn) (bj a1 — Mn) + (bjrs1 — Mn)?]/3,
k=1

with My;, My = Myue); and M = Myny); and puue) ik and pneyje as given in (3)-(5).
The extended Gowda-Diday dissimilarity measure between histograms u and v for the variable
Y;, d]D G (u, v), (obtained by extending the Gowda and Diday, 1991, result for intervals) is defined by
|Suj - Svj| Suj + Svj - Qs(uﬂv |Muj Mvj‘

9 dDGU,U = + + R ':1,...,,
() J ( ) Suj—l—Svj Suj+Svj \Ijj ’ i

with My and S as in (3)-(8) and W; = bjs,+1 — bj1 as the span of the observed histograms for Yj.

-1 dfG(u,v).

In the interests of space limitations, we illustrate these distances for the observationsu =1,3,5,7

Then, the extended Gowda-Diday dissimilarity measure for Y is obtained from Zp

only from the Iris dataset. Hence, the extended Gowda-Diday distance matrix, DlGD , with elements

d$'P (u,v) obtained from (9), for Y3, and the overall distance matrix, D“P | are, respectively,
0.81 0.71 1.44 . 529 6.04 7.05
(10)  DFP = . 066 1.08 |, D= . 451 5.34
0.99 . 4.18

The extended Ichino-Yaguchi dissimilarity measure between histograms u and v for the variable

., dPCG(u, v), (by extending the Ichino and Yaguchi, 1994, result for intervals) is defined by

(11) d§y(ua U) = S(qu)j - S(uﬂv)j +7(2‘S’(uﬁv)j - Suj - Svj)a J=1...,p,

for a preassigned constant 0 < v < 0.5 and with S,y as defined in (6)-(8). Substituting dfy(um),
j=1,...,p, into (2) with ¢ = 2, we obtain the Euclidean extended Ichino-Yaguchi distance matrix,
D'V, for the observations v = 1,3, 5,7, when v = 0.25, as

0.49 0.72 1.08
(12) DY = . 039 0.73
0.44

DeCarvalho (1994) proposed extensions of the Ichino-Yaguchi dissimilarity for intervals, by
introducing several comparison functions involving agreement and disagreement indexes. These ideas
can be expanded to the extended Ichino-Yaguchi dissimilarity measure of (11) for histograms. Hence,
one such extended deCarvalho dissimilarity measure between histograms u and v, for Y}, is given by,

(13) d;f(u,v):1—ij:1—((1]‘—5]‘)/(04]'—1—,8]‘4-)(]‘—!-(5]‘), i=1...,p,

where Q5 = S(uﬂv)ja ,Bj = Suj - S(uﬂv)ja X5 = Svj - S(uﬂv)j and (5]' = S(qu)j + Suﬂv)j - Suj - Svj'
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Then, by substituting into (2) with ¢ = 2, for the observations u = 1,3,5,7, the Euclidean extended
deCarvalho distance matrix, D¢ becomes

1.67 2.69 2.82
(14) D = . 142 1.92
2.00

Several other distance matrices have been derived in Kim and Billard (2011b), q.v. These include
a cumulative distribution (cdf) based distance, as well as extending other distances from deCarvalho
(1994, 1998) to histogram data. Irpino and Verde (2006) develops a type of Wasserstein distance
using inverse cdf’s. Kim (2009) reviews these among others. Any one of these distances can then be
substituted into (2) to obtain relevant Minkowski distances.

4. Monothetic and Polythetic Clustering

There are many clustering procedures for classical data and for interval data; see, e.g., Gordon
(1999) and Kim (2009) for a review. The current focus is on divisive clustering for histogram data.
Kim and Billard (2011c¢,a), respectively, introduced a monothetic algorithm and a polythetic algorithm
for histogram observations. While both methods use the dissimilarity matrices D, they differ in
the strategy used to find the optimal partition. The monothetic method considers the order of the
mean values of the histograms for each variable (in one sense, it is an extention and adaptation of
Chavent’s, 1998, method for intervals). In contrast, the polythetic algorithm does not depend on the
orders of single variables but uses all variables simultaneously. In particular, it starts with a ’seed’
observation that is the farthest away from other observations (in terms of dissimilarity measures), and
then iteratively determines if an observation is closer to, and therefore moved into, so-called ’splinter’
or 'main’ subclusters. More complete details and a comparison of both methods are in Kim (2009).

Suppose at the r** stage, the original set of observations 2 = P, has been partitioned into r
clusters, P, = {C,...,C;}. Suppose cluster C,, contains n,, observations, w = 1,...,r. The divisive
algorithm then selects that cluster Cy, to be partitioned into Cy, = (C}, C2) which minimizes the total
within-cluster variation W(P,) = >_" _, I(Cy,), or equivalently which maximizes

w=1
(15) Aw:[(cw)—I(Ci)—I(Ci% I ’LU QTZZg“g” ’LLU 'U}Zl,...,T',
u=1v=1

where d(u,v) is a dissimilarity or distance measure (e.g., those considered in Section 3) between the
observations u and v in the cluster Cy, g, is the weight for observation u, and 7 =3 _." | gu.

The monothetic and polythetic algorithms were applied to the Iris histogram data using all
eight observations. The dendograms were somewhat similar for each algorithm though the validity
indexes differed (not defined/shown herein; but see Kim and Billard, 2011a) with perturbations in
the cluster structures being driven by the group 3 observation (which plays a role as a link between
two species/clusters). We give the dendograms for the monothetic algorithm. Thus, Figure 1 shows
the clusters that emerged when using the extended Gowda-Diday distance matrix. Figure 2 gives the
results for the Euclidean distance matrix based on the Ichino-Yaguchi distances. The algorithm based
on the Euclidean extended deCarvalho distance produced the dendogram of Figure 3.

It is immediately clear that the dendograms shown in the Figures 1 and 2 ultimately comprise
the same clusters, although they arrive there by different routes and with different cutting variables.
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Figure 1 - Clusters based on extended Gowda-Diday Distances
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Figure 2 - Clusters based on FEuclidean extended Ichino-Yaguchi Distances

For example, for Figure 1, the first cut variable is ”Petal Width = Y; < 0.95”, whereas for Figure 2,
the first cut is made on ”Petal Length = Y3 < 3.33”; also, in Figure 1, the second stage partitions
the subcluster with observations Ci = {1,2,3}, while in Figure 2, the second stage partitions the
subcluster of observations C% = {4, ..., 8}, and so on.

In contrast, Figure 3 is quite different primarily because of the group 3 observation, which
immediately at the first partition is placed with the subcluster 012 = {3,...,8} and not the observations
1 and 2 as in the first two dendograms. Subsequent partitioning stages revolve around partitioning
this larger subcluster C? before returning to the Cf to partition it into its constituent components.
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This distinction for the extended deCarvalho distances is a consequence of the fact that the this
distance measure gives larger weight to overlapping areas compared to the extended Gowda-Diday
and extended Ichino-Yaguchi distance measures.
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Figure 3 - Clusters based on FEuclidean extended DeCarvaldo Distances
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