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Introduction

A mathematical problem of considerable interest is to approximate a continuous function f(t),

t ∈ [0, 1], based upon samples f(ti), i = 1, . . . , n. We do not observe f(ti) directly, but only in

the presence of correlated zero mean noise {ǫ(t1), . . . , ǫ(tn)}, which we assume throughout to obey a

multivariate Gaussian distribution. The data are {(t1, y(t1)), . . . , (tn, y(tn))}, where y(ti) = f(ti) +

ǫ(ti), for i = 1, . . . , n, and our objective is to extract the signal f from the data using an estimator f̂

with low integrated mean squared error (IMSE), defined as

R(f̂ , f) = E||f̂ − f ||22 =
∫ 1

0
E(f̂(x)− f(x))2dx.

Wavelet shrinkage methods have been very successful in signal extraction and nonparametric regres-

sion, but most methods are focused on equispaced samples (i.e., over a regular grid ti = i/n) with

independent and identically distributed (IID) errors. The equispaced assumption has been relaxed to

handle unequally spaced samples with a fixed design (Cai and Brown, 1998), a uniformly distributed

design (Cai and Brown, 1999) and a general random design (Sardy et al., 1999; Kerkyacharian and

Picard, 2004), but these extensions are restricted to IID errors. Wavelet shrinkage methods have

also been adapted to handle correlated errors, in the context of equispaced samples (Johnstone and

Silverman, 1997) and of unequally spaced samples with a fixed design (Porto et al., 2008).

In this paper, we investigate wavelet shrinkage for certain unequally sampled designs in the

presence of correlated errors. The sampling schemes that we consider are stochastic, where either the

sample points ti are uniformly distributed in [0, 1] or they come from a jittering; i.e., ti = (2i−1)/(2n)+

ji, where ji are IID uniform [−1/(2n), 1/(2n)] random variables. Stochastic sampling techniques are

of interest because they can overcome certain aliasing problems associated with sampling on a regular
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grid (Dippé and Wold, 1985). We show that under our assumptions the samples can be treated as if

they were equispaced with correlated noise (Johnstone and Silverman, 1997), and hence we can apply

the VisuShrink procedure (Donoho and Johnstone, 1994) with level-dependent thresholds.

Wavelets and wavelet shrinkage

An orthonormal wavelet basis is generated from dilation and translation of a “father” wavelet

φ (or scaling function) and a “mother” wavelet ψ. Let

φj,k(t) = 2j/2φ(2jt− k) and ψj,k(t) = 2j/2ψ(2jt− k).

Denote the inner product by 〈·, ·〉. For a given square-integrable function f on [0, 1], let

cj,k = 〈f, φj,k〉 and dj,k = 〈f, ψj,k〉 .

The function f can be expanded into a wavelet series as

f(x) =
2j0−1∑

k=0

cj0,kφj0,k(x) +
∞∑

j=j0

2j−1∑

k=0

dj,kψj,k(x).

An orthonormal wavelet basis has an associated exact orthogonal discrete wavelet transform W

that transforms sampled data into discrete wavelet coefficients. Let

θ̃ =Wy =
(
c̃j0,0, . . . , c̃j0,2j0−1, d̃j0,0, . . . , d̃j0,2j0−1, . . . ,

d̃J−1,0, . . . , d̃J−1,2J−1−1

)T

be the coefficients of the discrete wavelet transform. Define the soft threshold function by

ηS(d, λ) = sgn(d)(|d| − λ)+,

for some threshold λ.

Now suppose that the error vector e = (e1, . . . , en)
T have a multivariate Gaussian distribution

with mean 0 and covariance matrix Γ. Also, assume that the errors are stationary so that Γ has

entries γ|r−s|. Let z = We be the wavelet transform of the error vector. Neglecting boundary

effects, within each level zj,k will be a portion of a stationary process with level-dependent variance

σ2j = Var(zj,k) (Johnstone and Silverman, 1997).

Wavelet shrinkage for random design with correlated errors

Consider a sample (t1, y(t1)), (t2, y(t2)), . . . , (tn, y(tn)) from some stochastic sampling scheme

with respective order statistics 0 ≤ t(1) < t(2) < · · · < t(n) ≤ 1 that satisfy

Var
(
t(i)

)
≤ 1

n
and

∣∣∣∣E
(
t(i)

)
− i

n

∣∣∣∣ ≤
1√
n

(1)

for i = 1, . . . , n. Given the data, assume the model

yi = f(t(i)) + ei,(2)

where yi ≡ y(t(i)) and the errors ei = e(t(i)) are such that

Cov
(
e(t(i)), e(t(j))

)
≤ γ(|i− j|)(3)

and

lim
n→∞

n−1∑

u=−(n−1)

|γ(u)| <∞.(4)
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Let f̂(t) be the estimator of f(t) for all t ∈ [0, 1], where

f̂(t) =
2j0−1∑

k=0

ĉj0,kφj0,k(t) +
J ′−1∑

j=j0

2j−1∑

k=0

d̂j,kψj,k(t);(5)

d̂j,k is given by

d̂j,k = ηS(d̃j,k, λj),(6)

where λj = σj
√
2 log n; and J ′ is the largest integer such that 2J

′ ≤ K
√
n/ logn for some chosen

constant K > 0. The following theorem states our main result.

Theorem 1 Suppose that model (2) is valid, the conditions of (1) are met and ei = e(t(i)) are sta-

tionary Gaussian noise with zero mean satisfying the conditions of (3) and (4). Suppose also that the

mother wavelet ψ has r vanishing moments and is compactly supported. Then the estimator f̂ given by

(5) achieves within a logarithmic factor almost the optimal convergence rate over the range of Hölder

classes Λα(M) with α ∈ (0, r] in the sense that

sup
f∈Λα(M)

E||f̂ − f ||22 ≤ C

(
log n

n

)α/(1+α)

and

sup
f∈Λα(M)

1

n

n∑

k=1

E|| ̂f(tk)− f(tk)||22 ≤ C

(
log n

n

)α/(1+α)

,

for all M ∈ (0,∞).

The conditions of (3) and (4) occur in diverse applications, and specific cases of interest where

the conditions of (1) also occur are given by two propositions in our paper.

Simulations

Our simulation results show that the IMSE on random designs is bigger than those on equispaced

design in all the cases. The IMSE for jittering fall between those for uniform and equispaced in almost

all the cases. However, the jittered sampling yields almost the same results as the equispaced design so

that the efect of small timing errors is small, mainly for bigger sample sizes. Visually, the reconstruction

with uniform design is a little more wrinkled than the equispaced and jittered designs. The jittering

is visually almost indistinguishable from the equispaced design.

Application

As an example of the application of our methodology, let us consider the problem of estimating

the light curve for the variable star RU Andromeda using data obtained from the American Association

of Variable Star Observers (AAVSO) International Database at

www.aavso.org. For our example, we focused on the 256 successive observations recorded from Julian

Day 2,440,043 to 2,441,592 (July 5, 1968 to October 1, 1972).

Figure 1(c) shows the estimated light curve using threshold (6). Note that this light curve differs

from the one in Figure 1(a) mainly in the first half of the series, evidently due to the autocorrelated

errors. Figure 1(d) shows the sample autocorrelation sequence for the residuals from the fitted curve.

The fact that this sequence damps down rapidly is an indication that assuming the conditions of (3)

and (4) is reasonable here.
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Figure 1: (a) Data points and estimated light curve through VisuShrink. (b) Mean absolute deviation

(MAD) from zero of the wavelet coefficients at each resolution level j. Level j = 7 is the finest.

Endpoints of the error bars are the .025 and .975 quantiles of MAD obtained from 500 samples (with

replacement) of the wavelet coefficients at each resolution level j. (c) Data points and estimated light

curve considering correlated errors. (d) Residuals sample autocorrelation function and 95% confidence

interval.
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M. A. Z. Dippé and E. H. Wold. Antialiasing through stochastic sampling. ACM SIGGRAPH Computer

Graphics, 19(3):69–78, 1985.

D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81:425–

455, 1994.

I. M. Johnstone and B. W. Silverman. Wavelet threshold estimators for data with correlated noise. J.

R. Stat. Soc. Ser. B Stat. Methodol., 59(2): 319–351, 1997.

G. Kerkyacharian and D. Picard. Regression in random design and warped wavelets. Bernoulli, 10(6):1053–

1105, 2004.

R. F. Porto, P. A. Morettin, and E. C. Q. Aubin. Wavelet regression with correlated errors on a piecewise
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