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Introduction

Latent trait theory is often referred to as item response theory (IRT) in the area of educational
testing and psychological measurement. IRT models show the relationship between the unobserved
constructs (e.g., an academic proficiency) and the observed variables (e.g., an item response of the
examinee). Because IRT provides many advantages over classical test theory, IRT methods are used
in many testing applications. One of the useful features of IRT is the comparability of the test scores
obtained from different test forms. However, the parameters of test items need to be put onto the
common metric, namely the item parameter calibration, in advance.

Among various IRT models, this study focuses on unidimensional IRT models for dichotomously
(0/1) scored tests. Under the three-parameter logistic (3PL) model (Lord, 1980), the probability of a
correct response to the item j for the latent trait variable θ is defined as

P (θ|aj , bj , cj) = cj +
1 − cj

1 + exp(−1.7aj(θ − bj))
,

where aj , bj , and cj are item parameters for the item j and are alos referred to as the discrimination
parameter, difficulty parameter, and pseudo-guessing parameter for item j, respectively. Under the
two-parameter logistic (2PL) model, the value of the pseudo-guessing parameter is fixed at zero. Thus,
the model is defined as

P (θ|aj , bj) =
1

1 + exp(−1.7aj(θ − bj))
.

Let us assume that θ is linearly transformed by θ∗ = u + vθ, where u and v are the scale
transformation constants. The linear transformation of the item parameters, a∗j = aj/v and b∗j =
u + vbj , would produce the same probability of a correct response for the item j. This property
indicates that the parameter estimates on different IRT scales are linearly related. Therefore, a
proper linear transformation allows the parameter estimates on different scales to be converted onto
the same scale (Kolen & Brennan, 2004).

Several item calibration methods are used for linking item parameters to the same scale. The
calibration methods are generally classified into three groups: (a) separate calibration, (b) concurrent
calibration, and (c) fixed common item parameter calibration. The performances of these methods
have been compared in many studies (Hanson & Béguin, 2002; Kim & Lee, 2006; Lee & Ban, 2010).

The factor analytic method, which was first proposed by Mayekawa (1991), had not been exam-
ined until recently. This method is categorized as one of the characteristic curve methods for separate
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calibration. The first study (Arai & Mayekawa, 2011) using the factor analytic method showed that it
performed well, but they did not compare it to the other item characteristic curve methods . Another
study showed that it performed best among the other methods, but because they had used practical
data, we could not assess the accuracy (Fujita & Mayekawa, to appear).

In this study, we focused on five calibration methods: the factor analytic method, the two
characteristic curve methods (Stocking-Lord and Haebara), the moment method (Mean/Sigma), and
the fixed common item parameter (FCIP) calibration methods. Characteristic curve methods and
moment methods are subcategories of separate calibration methods. Simulated data were generated
assuming two IRT models. Using various simulation conditions, we examined the relative performance
and robustness of these calibration methods.

Calibration methods

In separate calibration, item parameters for two test forms are first separately estimated. Next,
the two sets of item parameter estimates of the common items are used to estimate the scale trans-
formation constants, u and v, used for linking the two scales.

The Mean/Sigma method is a moment methods. It uses the means and standard deviations
of the b-parameter estimates of the common items (Marco, 1977). The Haebara method and the
Stocking-Lord method both use the characteristic curves of common items. The Haebara method
finds scale transformation constants such that the sum of the squared differences between the item
characteristic curves are minimized (Haebara, 1980). The Stocking-Lord method finds constants such
that the squared difference between the test characteristic curves are minimized (Stocking & Lord,
1983).

The factor analytic method minimizes the criterion

ΣG
g=1Σj∈g

∫
Θ
[P (θ|â(g)

j , b̂
(g)
j , ĉ

(g)
j ) − P (−ug

vg
+

1
vg

θ|aj , bj , cj)]2hg(θ)dθ,

where â
(g)
j , b̂

(g)
j , and ĉ

(g)
j are item parameter estimates separately calibrated for the form g, g =

1, 2, ..., G; ug, and vg are the scale transformation constants for the form g; and hg(θ) is the ability
distribution of the form g (Arai & Mayekawa, 2011).

In the FCIP method, item parameters are estimated using two separate runs of the estimation
program. Unlike separate calibrations, in the second calibration run, item parameters for the common
items are fixed at the values estimated in the first calibration run.

Methods

Simulations were designed based on the study of Hanson and Béguin (2002). We used two test
forms, the old form (Form A) and the new form (Form B). Both test forms consisted of 60 items, and
they had 20 common items. In this study, the item parameters for Form B were to be put on the scale
of Form A.

One hundred sets of item parameters, a, b, and c, were generated for the 3PL model such that
a ∼ LN(0, 0.2), b ∼ N(0, 1), and c ∼ BETA(8, 32). Another 100 sets of item parameters, a and b were
generated for the 2PL model from the same distributions such that a ∼ LN(0, 0.2) and b ∼ N(0, 1).
These item parameters were divided into five sets of 20 items such that the statistical characteristics
of five sets were as similar as possible. Form A consisted of the first three sets of 20 items, i.e., Item
1 through Item 60. Form B consisted of the first set and the last two sets of 20 items, i.e., Item 1
through Item 20 and Item 61 through Item 100.

The proficiency variables (θ) for Form A were sampled from a normal distribution with mean
0 and standard deviation 1; this was denoted as N(0, 1). Three sets of the proficiency variables for
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Form B were sampled from the N(0, 1), N(0.5, 1), and N(1, 1) distributions. One hundred sets of
these four proficiency variables were drawn and then item response data sets were generated using
WinGen3 (Han & Hambleton, 2010).

Two levels of sample sizes were considered: 500 examinees per form and 3000 examinees per
form. Three levels of the number of common items were considered: 5 items, 10 items, and 20 items.
The 20 common items were divided into four sets of five items such that the statistical characteristics
of the four sets were as similar as possible. The first set of five items were used as common items in
the 5-common item condition, and the first two sets was used as common items in the 10-common
item condition. The rest of the 15 (or 10) items were treated as unique (non-common) items.

Four factors were considered for this simulation study: IRT models (2PL and 3PL); proficiency
distribution levels (N(0, 1), N(0.5, 1), and N(1, 1)); sample sizes (500 and 3,000); and the number
of common items (5, 10, and 20). There were a total of 36 conditions. Under each condition, the
five calibration methods were compared; factor analytic (FA) method, Stocking-Lord (SL) method,
Haebara (HB) methods, Mean/Sigma (MS) method, and FCIP (FI) method.

Item parameters for the two forms (Form A and Form B) were separately estimated using the
computer program BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003). To estimate the scale
transformation constants, a program called CALR was used for the FA method and an R package
”plink” was used for the SL, HB, and MS methods. In the FI method, item parameters estimated
by BILOG-MG for Form B were not used, but the computer program PARSCALE (Muraki & Bock,
2003) was used for the estimation of item parameters for Form B. PARSCALE was run twice. The
initial values for the unique items were estimated in the first run, and the item parameters on the scale
of Form A were estimated in the second run. This procedure is based on the revised FCIP method
(Kim, 2006; Kang & Petersen, 2009).

The criterion used in this study is the average of the mean squared error (MSE) of the item
characteristic curves (ICCs). This ICC criterion is given by

1
R

ΣR
r=1

1
J

ΣJ
j=1

1
M

ΣM
m=1[P (θm|ajT , bjT , cjT ) − P (θm|âr

j , b̂
r
j , ĉ

r
j)]

2h(θm),

where âr
j , b̂r

j , and ĉr
j are the item parameter estimates for the item j obtained from the replication r;

ajT , bjT , and cjT are the true item parameters for the item j; θm is the m-th proficiency when the
interval (-4, 4) on the θ-scale is divided into M points; h(θm) is the weight proportional to the density
function of N(0, 1); R is the number of replications ; and J is the number of unique (non-common)items
on Form B. For this study, M and R were 31 and 100, repectively.

Results

Most of PARSCALE runs used in the FI method converged. However, for the 2PL model, the
first PARSCALE run did not converg at six of the 100 replications in the 500 sample size for the N(1,
1) condition. For the 3PL model, it did not converge at one of the 100 replications in the 500 sample
size for the N(1, 1) condition. For the 2PL model, the second PARSCALE run did not converge at
one of the 100 replications in the 500 sample size for the N(1, 1) condition. For the 3PL model, it
did not converge at one of the 100 replications in the 500 sample size for the N(0, 1) condition. The
results for each replication in the second PARSCALE run were not used to calculate the criterion.

The values of the ICC criterion under 2PL model and 3PL model are presented in Figures 1 and
2, respectively. In each figure, the plots in the two rows give the results for the sample size of 3000
and 500.

The figures showed that the MSE decreased as the sample size increased from 500 to 3000. The
MSE increased as the number of common items decreased from 20 to 4 and as the new group that
took Form B became nonequivalent to the old group that took Form A with the distributions((N(0,
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Figure 1: Averaged Mean Squared Error for the ICC criterion under 2PL model

1), N(0.5, 1), and N(1, 1)), with a few exceptions.
The MS method had the largest MSE, and the FI method had the lowest MSE, with a few

exceptions. Among ICC calibration methods, the FA and SL methods showed similar performances
and had lower MSE than the HB method under the 2PL model; whereas, the SL methods showed
performances similar to the HB method, and the FA method had lower MSE than both the methods
in the 3PL model.

Summary and Discussion

This study focused onvfive calibration methods (FA, SL, HB, MS, and FI) and used simulated
data to compare their performances under various conditions.

Several results were found in this study. First, the MSE decreased as the sample size increased
from 500 to 3000. Second, with a few exceptions, the MSE increased as the number of common items
decreased (20, 10, and 4). Third, the MSE increased as the new group that took Form B became
nonequivalent to the old group that took Form A(N(0, 1), N(0.5, 1), and N(1, 1)). These results agree
with the previous studies.

The performances of five calibration methods were similar in each condition except for the FI
method in the 500 sample size for the N(1, 1) condition under the 2PL model. In the 20 common
items condition, there were small differences among the five calibration methods. As the number of
common items decreased, the differences increased slightly. The MS method had the largest MSE in
every condition. Under the 2PL model, the FI method had the lowest MSE except the 500 sample size
with the N(1, 1) condition. Under the 3PL model, the FA and FI methods had the lowest MSE. The
FI method and the FA method both performed well. However, compared to the FI method, the FA
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Figure 2: Averaged Mean Squared Error for the ICC criterion under 3PL model

method did not give any problems with the convergence of the computer program. From the practical
viewpoint, the FA method might be more useful than the FI method.

In this study, the performances of five calibration methods were examined using simulated data.
There are various other types of tests and examinations in practice. Our future research will cover
more practical situations.
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