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ABSTRACT

In this paper the theory of non homogeneous Markov systems (NHMS) with fuzzy states is used
for describing students’ educational progress in Greek Universities. More specifically, a model for
projecting students’ transitions among ”progress levels” related to academic years is provided. The
progress levels, assumed fuzzy, are defined and the relevant membership functions are given in terms
of the degree of the difficultly of the course units. An application of the proposed model is given using
data drawn from a Greek public University.
keywords Markov systems, Markov processes, fuzzy states, students’ educational progress

Introduction

The idea of a non homogeneous Markov system (NHMS) with fuzzy states introduced firstly in
Symeonaki and Stamou (2004a) is an attempt to deal with a number of real applications in manpower
planning and in population dynamics in general, when one is faced with the fact of fuzzy states, which
represent states of the system that cannot be precisely defined. The classification of the state space
according to traditional methods (member, non-member) introduces uncertainty that is better dealt
perceiving states as having imprecise boundaries that facilitate gradual transition from membership to
nonmembership and vice versa. The rate of convergence, the asymptotically attainable structures and
the sensitivity of such systems are examined in Symeonaki and Stamou (2006), while some aspects of
input control are given in Symeonaki and Stamou (2004b).

In this paper the concept of a NHMS with fuzzy states is used in order to describe and model
the transitions of Greek university students among progress levels that are related to academic years
and represent students’ educational progress.

Modeling the educational progress of students and predicting enrollments and degrees awarded
by Universities is fundamental to higher education planning. In recent years, various approaches of
modeling such as processes have been suggested (Markov, regression or simulation). The Markovian
approach appears to be one of the most widely applied. There, it is assumed that each student
occupies a given state at time t and makes a transition from state to state at time t + 1 (the first
and the last state may represent enrollments and graduations correspondingly, while other states
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represent educational progress). In Harden and Tcheng (1971) transition matrices are computed
from available historical data, and enrollment projections are calculated by repetitive multiplication
of a given enrollment distribution by the transition matrix. Gani (1963) was the first to produce
formulae for estimating student enrollments and degrees awarded in Australian Universities. In doing
so, he constructed a simplified model for student progress through a university course from which the
formulae were derived. Since then there has been numerous methods to forecast university enrollments
and degrees awarded in the literature (see for example Song and Chissom (1994), Sah and Degtriarev
(2005), among others).

The present work is an attempt for modeling transitions of the Greek university students between
progress levels, assuming that the state space is fuzzy. This is a very realistic assumption because
in the Greek university system academic years do not really represent students’ educational progress.
Students can move to a higher academic year without having successfully passed all course units that
normally correspond to a previous academic year. This gives room to students first enrolled in the
same academic year to belong to different progress levels at the end of the year. Consider, for example,
two freshmen (at time t); the first one is successful in all his/her exams and the second one is not
successful at all. These two students cannot actually belong to the same progress level at time t + 1
(end of the first academic year). This process leads students to have a certain distribution of duration
of studies (explained more in the next section) that can be used to estimate degrees awarded. Thus, by
estimating students’ progress level we can project, at an early stage, the number of degrees awarded.

In the above context, the remainder of the paper is organized as follows: In the next Section,
the basic elements of the model describing the student system are defined and the expected number of
students at each progress level, at time t, is given. The fuzzy states of the student system are provided
and the relevant membership functions are estimated in terms of the degree of difficulty of the course
units. The last Section provides a numerical example illustrating the methodology of estimating the
membership functions denoting the participation to the different level of progress, with data drawn
from the archives of a Greek public University, the Panteion University of Social and Political Sciences.

The NHMS with fuzzy states for describing students’ progress in Greek Universities

To facilitate understanding of the problem considered in this paper we give first some details
concerning studies in Greek universities. The majority of the university curricula are of the type
of four-academic years or eight semesters (exceptions correspond to medical, veterinary, engineering
and agricultural sciences). Graduation is possible at the end of the prescribed period of time if a
certain number of course units, is successfully completed by the students. This number of course units
and its distribution to the academic years is decided by the corresponding department. However,
according to the legislation covering university studies a student can enroll to a higher academic year
without having successfully passed all course units that are normally taught in the previous academic
year. Students are allowed to take exams for an unlimited number of times till successfully complete
the certain number of course units that is necessary for graduation. It is apparent that there exists a
prescribed minimum time for graduation but there is no corresponding upper limit. The above process
leads students registered in the same academic year to potentially have different levels of progress,
while considering graduation time students can graduate at the minimum prescribed time, can have a
long period for graduation or can remain as perpetual students. The distribution of such as duration
of studies is fully examined in Kalamatianou and McClean (2003). Given this, the question now arises,
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Figure 1: Representing the transitions.

as to whether modeling educational progress helps us predict, in early time, the duration of studies
and finally the degrees awarded. In this paper we consider the case of four-academic years curricula,
but the model could easily be adjusted in the case of five or more years of studies.

Now, let i = 1, 2, 3, 4 indicate the academic year and mi the number of course units being
taught during that year. The proposed model assumes that students are stratified into different crisp
(nonfuzzy) states according to their progress, which is measured in terms of the students’ academic
performance. These crisp states are called progress states. Let i(l) denote the progress state of
a student of the i − th academic year that would have to pass l course units, by the end of that
year. Consider for example the first year of studies (progress state 1 (m1)); at the end of this year
a student can either continue his/her studies or voluntarily leave the system. If the student carries
on, he/she can do so, having passed all his/her exams (progress state 2(m2)), having passed none
of the course units (progress state 2(m1 + m2)), having missed one (progress state 2(m2 + 1)), etc.
Accordingly, a student can move to the (i+ 1)− th academic year, having to pass

(∑i+1
l=1 ml − j

)
for

j = 0, 1, 2, ...,
∑i

k=1mk and i = 1, 2, 3, course units. Figure 1 represents all possible transitions of the
students. It is apparent that the state space of the student system is S = {(1(m1), 2(m2), 2(m2 +
1), , ..., 2(m2 +m1), 3(m3), ..., 3(m3 +m2 +m1), 4(m4), ..., 4(m4 +m3 +m2 +m1), ...}. Obviously, the
state space of the NHMS consists of a rather large number of states and the transitions between
them are not actually associated with these exact states. For this reason it is more appropriate to
perceive the states as having imprecise boundaries and to assume that the system consists of four
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fuzzy states, each denoting a level of progress related to the corresponding academic year. We define
by F = {F1, F2, F3, F4} the fuzzy state space (i.e. the set of all fuzzy states), where F1 represents
the ”1st LEVEL OF PROGRESS”, F2 the ”2nd LEVEL OF PROGRESS”, F3 the ”3rd LEVEL OF
PROGRESS” and F4 the ”4th LEVEL OF PROGRESS”. Fr, r = 1, 2, 3, 4, is assumed to be a fuzzy
set on S, i.e. the state space of the system is formed by fuzzy subsets of a primary space of the
crisp states of S. Let also µF r (·) : S → [0, 1] denote the membership function of a fuzzy set Fr, for
r = 1, 2, 3, 4. It is assumed that F = {F1, F2, ..., FN} defines a fuzzy partition on S = {1, 2, ..., k} such
that

∑N
r=1 µF r (·) = 1, i.e. F is a Ruspini partition on S (Ruspini (1969)). This is not restrictive,

since in numerous real applications it is rather appropriate to use the condition
∑N

r=1 µF r (·) = 1. The
basic parameters of the proposed model are now given:

1. NF r (F, t) is the number of students in fuzzy state Fr at time t, r = 1, 2, 3, 4, t = 0, 1, 2, ...,
calculated as the fuzzy cardinality of Fr,

2. pF rF s (F, t) is the transition probability from fuzzy state Fr to fuzzy state Fs at time t, r =
1, 2, 3, 4, s = 1, 2, 3, 4,

3. poF s (F, t) is the probability that a new student entering the system at time t goes to fuzzy state
Fs, s = 1, 2, 3, 4,

4. pF rN+1 (F, t) is the probability that a student being at fuzzy state Fr at time t leaves the system
r = 1, 2, 3, 4,

5. qF rF s (F, t) is the total transition probability from fuzzy state Fr to fuzzy state Fs at time t,
i.e. qF rF s (F, t) = pF rF s (F, t) + pF rN+1 (F, t) poF s (F, t), r = 1, 2, 3, 4, s = 1, 2, 3, 4,

6. T (t) is the total number of students serving the system at time t, and

7. ∆T (t) = T (t)− T (t− 1).

Note that pF rF s (F, t), poF s (F, t), pF rN+1 (F, t) and qF rF s (F, t) are estimated in Symeonaki
and Stamou (2004) using the concept of the probability of a fuzzy event introduced in Zadeh (1968).
What we require to find is the total number of students at fuzzy state Fi, at time t, i.e. we need to
estimate the population vector: N (F, t) = [NF 1

(t), NF 2
(t), NF 3

(t), NF 4
(t)]. This is given by:

N (F, t+ 1) = N (F, t) Q (F, t) + ∆T (t) po (F, t) .(1)

Now, assume that mdi denotes the mean deference of the grades achieved by the students in the
i−th course unit minus the average grade in the rest of the units, i.e.

mdi =

∑n
s=1

(
ysi −

∑l,k 6=i

k=1
ysk

l

)
n

(2)

where l denotes the number of units that a student passes in a corresponding academic year, n is the
number of students that pass the exams of course unit i in that year and ysi is the grade of the s− th
student, s = 1, 2, ..., n, in the i − th unit. Note that the mean difference, denoted here by mdi was
firstly introduced for estimating the difficulty of an examination in Kelly (1976), and is now one of the
commonly used examinee linear models for estimating relative difficulty of examinations in different
subjects (Coe et al (2008)).

We now provide the way of estimating the membership functions, µF r (·), of the fuzzy sets Fr.
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1. µF 1 (1 (m1)) = 1, i.e. a student that is at the first year of studies, has to follow m1 course units
and is regarded as a student of a ”1st LEVEL OF PROGRESS” with a membership degree equal
to one. In other words µF 1 (1 (m1)) = 1, corresponds to the degree that a student being at state
1 (m1) is compatible with the concept of a 1st LEVEL OF PROGRESS student represented by
the fuzzy state F1. Moreover, µF 2 (1 (m1)) = 0, µF 3 (1 (m1)) = 0 and µF 4 (1 (m1)) = 0, which
means that the student is considered to be at the 2nd, 3rd or 4th LEVEL OF PROGRESS with
a membership degree equal to zero.

2. µF 2 (2 (m2)) = 1, i.e. a student that is at the second year of studies and has successfully
passed all course units of the first academic year, belongs to the ”2nd LEVEL OF PROGRESS”
with a membership degree equal to one. Moreover, µF 1 (2 (m2)) = 0, µF 3 (2 (m2)) = 0 and
µF 4 (2 (m2)) = 0, meaning that he/she is considered to be at the 1st, 3rd and 4th LEVEL OF
PROGRESS with a membership degree equal to zero.

3. µF 1 (2 (m2 + 1)) = 1+|mdi|
m1

, i.e. a student that is at the second year of studies and has successfully
passed all course units of the first academic year except one (which has a degree of difficulty
equal to mdi) is regarded as a 2nd LEVEL OF PROGRESS student with a membership degree
equal to 1+|mdi|

m1
. Moreover, µF 2 (2 (m2 + 1)) = 1 − µF 1 (2 (m2 + 1)), µF 3 (2 (m2 + 1)) = 0 and

µF 4 (2 (m2 + 1)) = 0. For example, consider a student that moves from the 1st year to the
2nd who has successfully passed all course units of the first academic year except one (out of 8
(m1 = 8)). Let also that the md of that course unit is equal to −0.77. Therefore, the student
will be considered to be at fuzzy state F1 (”1st LEVEL OF PROGRESS”) with a membership
function equal to µF 1 (2 (m2 + 1)) = 1+0.77

8 = 0.2125. Simultaneously, the student will be at
state ”2nd LEVEL OF PROGRESS” with a membership function equal to 0.7875, etc.

A numerical example

We now provide a numerical example with data drawn from the archives of the Panteion Uni-
versity of Social and Political Sciences. We consider three students of the Department of Sociology
and we observe them at the stage where they have finished the first two semesters and move to the
second academic year of studies. The first student (A) failed to pass the exams only in one course
unit (C1), the second student (B) passed six course units and the third student (C) failed in all course
units except one. The reason we examine these students is that they are typical examples that cor-
respond to the three categories of duration of studies detected in Kalamatianou and McClean (2003),
mentioned earlier. Student A belongs to the category of those that graduate just after the completion
of the minimum required time. Student B belongs to the category of the students whose gradua-
tion process takes a long time and student C belongs to the category of the perpetual students. For
these three students the membership functions indicating the participation in the 1st , 2nd, 3rd and
4th LEVEL OF PROGRESS are estimated. The procedure illustrated in Table 1 concerns student
A and course unit C1, which was selected by 103 students. Column 2 provides the corresponding
grades of these students at C1. The third column gives for each student the average grades in all
other units except C1. The difference is given at the fourth column. Then, the md of unit C1 is
equal to 0.0899 (Equation (2)). Therefore, the specific student is considered to be at the different
fuzzy states with a membership function equal to: µF 2 (m2 + 2) = 1+0.0899

12 = 0.909, (”2nd LEVEL
OF PROGRESS”), µF 1 (m2 + 2) = 0.091, (”1st LEVEL OF PROGRESS”), µF 3 (m2 + 2) = 0, (”3rd
LEVEL OF PROGRESS”), µF 4 (m2 + 2) = 0, (”4th LEVEL OF PROGRESS”). Table 2 provides
the outcomes for students A, B and C. The values of the membership functions abide by the former
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Table 1: Estimating the degree of difficulty of course unit C1

Student Grade Average grades in other units Difference
1 7 6.49 0.51
2 7 6.32 0.68
...

...
...

...
103 6 5.60 0.40

mean difference 0.0899

Table 2: Membership functions and duration of studies

Student Membership function µF 1 Membership function µF 2 Duration of studies (in months)
A 0.091 0.909 42
B 0.480 0.520 102
C 0.990 0.01 -

categorization of students and highlights the possibility of predicting the duration of studies from the
students’ progress at the first year, i.e. the membership values mF 1.
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