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Introduction

In insurance problems, value at risk (VaR) is considered one of the most popular risk measure.
When VaR is known for each risk, it becomes important to manage VaR of joint position resulting
from combination of different dependent risks (e.g. market and credit risks). Here value at risk being
the quantile, it is important to know the dependence structure of the risks in order to find the VaR of
functions of these risks. Embrechts and his collaborators (2002) have shown that linear correlation is
insufficient as a measure of dependence for studying VaR across a wide range of portfolio structures.
Also see Embrechts et al (2003a) for a review of the problem and related work. The problem mentioned
here was first attacked by W. Hoeffding in 1941 (see collected works of Wassily Hoeffding (Fisher and
Sen, 1994) for English version ) using what is now known as copula (Sklar(1959), Nelsen (1999)).
Hoeffding studies different scale invariant measures of dependence using approximation to copula by
a finite series in Legendre polynomials. He, in fact, ends up using insurance data to compute certain
correlations (e.g. Kendall’s Tau and Spearman’s rank correlation). Recently financial practitioners
are considering another risk measure called the Expected Shortfall (ES), first proposed by Artzner et
al. (1997) and which is same as the measure ‘Conditional Value-at-risk’.

Olsen et al (1996) and Li et al (1998) have intoduced the approximations of copulas via Markov
operators. In this paper we restrict to approximations by Bernstein copula and follow the ideas of
Sancetta and Satchell (2004) and Durrleman et al (2001). We give the approximation using elementary
probabilistic tools as in Feller (1971) generalizing the work in Gzyl and Palacios (2003). Further, we
establish that the empirical Bernstein copula converges uniformly to the true copula. We note that the
measures of dependence, Kendall’s Tau, Spearman’s rank correlation, Hoeffding’s dependence index
and Pearson’s coefficient of mean square contingency can be approximated by those of approximat-
ing Bernstein copula and the empirical Bernstein copula. Based on the approximating (empirical)
Bernstein copula, we give a numerical procedure to determine the VaR and ES. These approximations
may be helpful as it is known that the biases in VaR estimates are due to the misspecification of
the copula. Finally we compute nonparametric estimates of Kendall’s tau and the Spearman’s rank
correlations between well known international indexes. It is observed that sample versions of these
two measures are close to the approximations based on the empirical Bernstein copula when the data
consist of monthly closing values. However when the data consist of bimonthly closing values, the
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estimates of Spearman’s rank correlations based on the empirical Bernstein copula are closer to the
above estimates than the sample versions. The approximation by the Bernstein copula goes through
for more than two dimensions.

Bernstein Copula Approximations and Convergences

Let C(., .) be a two-dimensional copula; that is, it is a function from [0, 1]2 to [0, 1] satisfying
(i) C is nondecreasing in each argument and (ii) C(u, 1) = u, C(1, v) = v and C(u, 0) = 0 = C(0, v).
Let Sm,u and Sm,v be two independent binomial random variables with parameters (m,u) and (m, v),
respectively. Let E[U ] denote the expected value of the random variable U. An approximation of the
copula function C(u, v) using the Bernstein polynomials of degree m in two variables is given by

(BmC)(u, v) =
m∑
i=0

m∑
j=0

C

(
i

m
,
j

m

)
Pi,u(u)Pi,v(v),(1)

where Pi,u(u) = (
m

i
)ui(1− u)m−i, i = 0, 1, · · · ,m. The functional approximation is called the Bern-

stein copula (Sancetta and Satchell, 2004). An important representation of the Bernstein copula (1)
is to express it in terms of expectation taken with respect to two independent binomial distributions
as

(BmC)(u, v) = E

[
C

(
Sm,u
m

,
Sm,v
m

)]
.

Such a representation allows us to deal with an extension of the uniform convergence result in Feller
(1971, Theorem 1, p.221) to Bernstein polynomials in two or higher dimensions. We next state a
theorem on uniform convergence of the Bernstein copula.

Theorem 1 : The Bernstein copula (BmC)(u, v) tends uniformly to C(u, v) as m→∞.

Proof: Consider

|(BmC)(u, v)−C(u, v)| =
∣∣∣∣E [C (Sm,um

,
Sm,v
m

)]
− C(u, v)

∣∣∣∣ ≤ E ∣∣∣∣C (Sm,um
,
Sm,v
m

)
− C(u, v)

∣∣∣∣ .(2)

Let Am = C
(
Sm,u
m ,

Sm,v
m

)
− C(u, v) and

R1 = {|Sm,u/m− u| ≤ δ, |Sm,v/m− v| ≤ δ}, R2 = {|Sm,u/m− u| ≤ δ, |Sm,v/m,−v| > δ}
R3 = {|Sm,u/m− u| > δ, |Sm,v/m− v| ≤ δ}, R4 = {|Sm,u/m− u| > δ, |Sm,v/m− v| > δ},

and let IR denote the indicator function of the set R. Then from (2),

|(BmC)(u, v)− C(u, v)| ≤ E|AmIR1 |+ E|AmIR2 |+ E|AmIR3 |+ E|AmIR4 |.(3)

Since C is uniformly continuous (Nelsen, 1999, Theorem 2.2.4 p.9) given ε we can choose a δ such that
on R1, |C(Sm,u/m, Sm,v/m)− C(u, v)| < ε. Thus the first term in (3) is

E|AmIR1 | < εE[IR1 ] < ε.(4)

Since C is bounded, there exists a finite number K such that the second term on the RHS of (3) is
bounded above by

E|AmIR2 | ≤ 2KE|IR2 | ≤ 2KP [|Sm,u/m− u| ≤ δ, |Sm,v/m− v| > δ]

≤ 2KP [|Sm,v −mv| > mδ].
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But by Hoeffding’s inequality (Hoeffding (1963)), P [|Sm,v − mv| > mδ] ≤ 2exp(−2mδ2). Thus for
sufficiently large m,

E|AmIR2 | ≤ 4Kexp(−2mδ2) ≤ ε.(5)

Similarly, for sufficiently large m,

E|AmIR3 | ≤ 4Kexp(−2mδ2) ≤ ε and E|AmIR4 | ≤ 4Kexp(−2mδ2) ≤ ε.(6)

From (4), (5),(6) and (3), we obtain that given ε there exists an m0 such that for all m ≥ m0,

sup
u,v
|(BmC)(u, v)− C(u, v)| < 4ε.

Since ε is arbitrary we get the required result.

Remark 1: Using the above Binomial random variables, it can also be established that if the copula
has continuous p-th order partial derivatives, then the partial derivatives of order ≤ p of the approx-
imating Bernstein copula converge uniformly to the corresponding partial derivatives of the copula
(Lojasiewicz (1988)).

Empirical Bernstein Copula

Let (U1, V1), (U2, V2), · · · , (Un, Vn) be a random sample from a continuous distribution. Define
the joint empirical distribution function

Hn(u, v) =
1
n

n∑
k=1

I[Uk ≤ u, Vk ≤ v],

and let Fn(u) = Hn(u,∞) and Gn(v) = Hn(∞, v) be its associated marginal distributions. We define
the empirical copula function Cn by

Cn(u, v) = Hn(F−1
n (u), G−1

n (u)),

where F−1(u) = inf{t ∈ R|F (t) ≥ u}, 0 ≤ u ≤ 1.
The corresponding empirical Bernstein copula is given by

(BmCn)(u, v) =
∑m
i=0

∑m
j=0Cn

(
i
m ,

j
m

)
Pi,u(u)Pi,v(v).(7)

Since the binomial r.v.s Sm.u and Sm,v are independent of the data, given the data, the empirical
Bernstein copula can be expressed in terms of expectation with respect to the binomial distributions
as (BmCn)(u, v) = E [Cn (Sm,u/m, Sm,v/m)] .

Theorem 2 The empirical Bernstein copula converges uniformly to the true copula. That is, as
m→∞ and n→∞,

sup
u,v
|(BmCn)(u, v)− C(u, v)| → 0, (a.s.).

Proof: We note that

sup
u,v
|(BmCn)(u, v)−C(u, v)| ≤ sup

u,v
|(BmCn)(u, v)−(BmC)(u, v)|+sup

u,v
|(BmC)(u, v)−C(u, v)|.(8)

From the Theorem 1 above, the second term on RHS of (8) goes to zero as m → ∞. The first term
can be written as

sup
u,v
|E[Cn(Sm,u/m, Sm,v/m)− C(Sm,u/m, Sm,v/m)]|.(9)
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Deheuvels (1979, 1981) has proved that the empirical copula converges uniformly to the true copula
almost surely. Thus given ε > 0 there exists an n0, which does not depend on u and v such that for
all n ≥ n0, the expression in (9) is less than ε, (a.s.). This completes the proof.

Let C,1(u, v) = ∂C(x,y)
∂x |x=u,y=v and C,2(u, v) = ∂C(x,y)

∂y |x=u,y=v. We note that (BmCn) is a copula
and its first order partial derivatives exist and are continuous.

Remark 2: From the above Theorem 2 and Lemma 3.1 of Olsen et al (1996), we get the result that
for all f ∈ Lp([0, 1]2), p ∈ (1,∞], as m→∞ and n→∞, for k = 1, 2,∫ 1

0

∫ 1

0
f(u, v)(BmCn),k(u, v)dudv →

∫ 1

0

∫ 1

0
f(u, v)C,k(u, v)dudv, (a.s.)

Remark 3: Suppose that the copula function C(x, y) has continuous first order partial derivatives
and the associated marginal distribution functions are continuous. Then using the above results it
can be shown that given ε > 0 there exists an m0 and an n0 such that for all n ≥ n0

sup
u,v
|Bm0(Cn),1(u, v)− C,1(u, v)| < ε and sup

u,v
|Bm0(Cn),2(u, v)− C,2(u, v)| < ε.

Further, from the weak convergence of the empirical copula process (Fermanian et al. (2004)), and
the fact that

∑m
i=0

∑m
j=0 |P ′i,u(u)Pi,v(v)| = O(m), it follows that as m→∞, n→∞ if m/

√
n→ 0, for

k = 1, 2,
sup
u,v
|(BmCn),k(u, v)− C,k(u, v)| → 0, in probability.

Using the law of iterated logarithm for the empirical copula process Deheuvels(1979), we obtain
the following result.

Theorem 3 Suppose that the copula function C(x, y) has continuous second order partial derivatives
and the associated marginal distribution functions are continuous. As m→∞, n→∞, if
m(log(logn))1/2/n1/2 → 0, then

sup
u,v
|(BmCn),1(u, v)− C,1(u, v)| → 0, and sup

u,v
|(BmCn),2(u, v)− C,2(u, v| → 0, (a.s.).

Remark 4: If the conditions of the Theorem 3 hold, then the sequence BmCn converges to C strongly
(Li et al. (1998)). That is, as m→∞, n→∞ and m(log(logn))1/2/n1/2 → 0,∫ 1

0

∣∣∣∣∫ 1

0
((Bmcn)(u, v)f(v)− c(u, v)f(v))dv

∣∣∣∣ du→ 0, (a.s.), for all f ∈ L1[0, 1],

where c(u, v) = ∂2C
∂u∂v denotes the density of the copula function C and (Bmcn) denotes the density of

the empirical Bernstein copula.
We give below some measures of associations and measures of risk based on a (unknown) copula C

with the required properties that can be approximated by the corresponding measures of a (empirical)
Bernstein copula with an appropriate m up to any given degree of accuracy.

Measures of Association or Dependence

Spearman’s rank correlation (ρs): ρs = 12
∫ 1
0

∫ 1
0 C(u, v)dudv − 3,

Kendall’s Tau (τ): τ = 1− 4
∫ 1
0

∫ 1
0 C,1(u, v)C,2(u, v)dudv.

Hoeffding’s Dependence Index (Φ): Φ = 90
∫ 1
0

∫ 1
0 (C(u, v)− uv)2dudv.

Pearson’s Coefficient of Mean Square Contingency (φ2): φ2 =
∫ 1
0

∫ 1
0 [c(u, v)− 1]2 dudv.
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The Bernstein copula has zero coefficient of tail dependence. Nevertheless, Sanchetta and
Satchell (2004) have indicated that the Bernstein copula could capture increasing dependence as
one moved to the tails.

Financial Application: Determination of Value at Risk and Expected Shortfall:

Copulas have been applied to the assessment of the Value at Risk (VaR) and the Expected Shortfall
(ES)risk-measures of a portfolio (Embrechts et al.(2002); Embrechts et al.(2003a, 2003b); Caillault
and Guégan (2009)). For illustration purpose consider a portfolio of two assets. Let X and Y be their
continuous returns over a common time horizon with distribution functions F1 and F2 , respectively.
Let λ be the weight of X. Denote by Z the portfolio return, i.e.,

Z = λX + (1− λ)Y,

with the corresponding distribution function FZ(z) = Pr[Z ≤ z]. The V aRα is defined as the α-th
quantile of the distribution FZ(z) and the ESα = E[Z|Z ≤ V aRα].

The distribution function of Z can be expressed in terms of the copula C associated with the
joint distribution function of (X,Y ) as

FZ(z) =
∫ 1

0

∫ F1( zλ− 1−λ
λ
F−1

2 (v))

0
c(u, v)dudv,

where c is the copula-density. The V arα is the solution of the equation FZ(z) = α and

ESα =
1
α

∫ 1

0

∫ 1

0
(λF−1

1 (u) + (1− λ)F−1
2 (v))I[λF−1

1 (u) + (1− λ)F−1
2 (v) ≤ V arα]c(u, v)dudv,

where I[A] denotes the indicator function of the set A.
Let v∗ = F1

(
z
λ −

1−λ
λ F−1

2 (v)
)
, then using the approximating empirical Bernstein copula:

FB(z) =
m∑
i=1

m∑
j=1

Cn

(
i

m
,
j

m

){∫ 1

0

j −mv
v(1− v)

Pm,i(v∗)Pm,j(v)dv
}
.

One possible numerical solution for the Value at Risk can be obtained as follows. First, simulate
Vijk from Uniform (0, 1), k = 1, · · · ,K, for large K, and i, j = 1, · · · ,m. Secondly, solve numerically or
graphically the following equation for z,

α =
m∑
i=1

m∑
j=1

Cn

(
i

m
,
j

m

){
1
K

K∑
k=1

[
j −mVijk

Vijk(1− Vijk)
Pm,i(V ∗ijk)Pm,j(Vijk)

]}
,

where V ∗ijk = F1

(
z
λ −

1−λ
λ F−1

2 (Vijk)
)
. Note that solving this equation seems lengthy but it is straight-

forward and can be useful when simulation from a copula becomes difficult. Moreover, this approxi-
mation can be used for any continuous and increasing function of a portfolio return.

The ESα can be approximated by

ESα(Bm)

= 1
α

∑m
i=1

∑m
j=1Cn

(
i
m ,

j
m

){
λ
K

∑K
k=1 F

−1
1 (Uijk)

[
i−mUijk

Uijk(1−Uijk)Pm,i(Uijk)Pm,j(U
∗
ijk)

]}
+ 1
α

∑m
i=1

∑m
j=1Cn

(
i
m ,

j
m

){
1−λ
K

∑K
k=1 F

−1
2 (Vijk)

[
j−mVijk

Vijk(1−Vijk)Pm,i(V
∗
ijk)Pm,j(Vijk)

]}
,

where Uijk and Vijk, k = 1, · · · ,K, for large K, and i, j = 1, · · · ,m, are independent variables sim-
ulated from Uniform (0, 1), V ∗ijk = F1

(
V aRα
λ − 1−λ

λ F−1
2 (Vijk)

)
and U∗ijk = F2

(
V aRα
λ − 1−λ

λ F−1
1 (Uijk)

)
.
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Data Analysis: Co movement of International Stock Markets

The study of the interdependence between international stock markets is crucial to exploit
diversification benefits and to have a clear picture of global economic and financial integration. For
such purpose, data on six international stock market indexes: S&P-500 (USA), DOWJONES (USA),
DAX (Germany), CAC40 (France), NIKKEI (Japan) and FTSE100 (UK) are considered. The data
consist of 380 monthly closing values of the indexes over the period 31 January 1973 through 31
August 2004. Results on the sample versions of Kendall’s Tau and Spearman’s rank correlation and
their empirical Bernstein copula approximations are presented in Table 1. As can be seen from the
Table 1, the estimates of the corresponding measures of dependence are very close to each other.

Table 1: Monthly International Stock Market Dependence Measures
S&P-500 DOWJONES DAX CAC40 NIKKEI FTSE100

S&P-500 0.7957* 0.2584 0.3290 0.3696 0.4157
0.7805** 0.2561 0.3250 0.3658 0.4116

DOWJONES 0.9396+ 0.2517 0.3398 0.3697 0.4071
0.9295++ 0.2489 0.3366 0.3643 0.4029

DAX 0.3749 0.3630 0.2214 0.2318 0.1999
0.3716 0.3599 0.2186 0.2295 0.1978

CAC40 0.4623 0.4782 0.3211 0.4424 0.3253
0.4578 0.4739 0.3188 0.4375 0.3208

NIKKEI 0.5178 0.5130 0.3401 0.6036 0.3713
0.5125 0.5080 0.3378 0.5977 0.3671

FTSE100 0.5746 0.5635 0.2931 0.4580 0.5214
0.5691 0.5581 0.2909 0.4535 0.5160

Note:Top right values refer to Kendall’s Tau (*) and Kendall’s Tau using Bernstein
Copula Approximation for m=300 (**). Bottom left values refer to Spearman’s Rho (+)

and Spearman’s Rho using Bernstein Copula Approximation for m=300 (++).

To exploit the smooth approximation of the Bernstein copula we further looked at the data
recorded as bimonthly by taking the closing values of the indexes for the months: January, March, May,
July, September and November. The sample version and the empirical Bernstein copula approximates
of the Spearman’s rank correlations are given in Table 2. It is observed that the bimonthly smoothed
approximate correlations based on the empirical Bernstein copula are closer to the monthly ones as
compared to the sample version for the data under consideration.

Table 2: Bimonthly International Stock Market Dependence Measures.
S&P-500 DOWJONES DAX CAC40 NIKKEI FTSE100

S&P-500 0.9342] 0.3898 0.5053 0.5702 0.6321
DOWJONES 0.8990$ 0.3747 0.5256 0.5344 0.6176

DAX 0.3568 0.3416 0.2668 0.3771 0.3955
CAC40 0.4718 0.4919 0.2341 0.6393 0.4380
NIKKEI 0.5363 0.5006 0.3442 0.6052 0.5120
FTSE100 0.5979 0.5836 0.3622 0.4048 0.4785
Note:Top right values refer to Spearman’s Rho (#) rank correlations. Bottom left

values refer to Spearman’s Rho using Bernstein Copula Approximation($) for m=500.
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Rüschendorf, B. Schweizer and M. D. Taylor (Eds.), ”Proceedings of the Conference on Dis-
tributions with fixed Marginals and related topics”. IMS Lecture Notes and Monograph Series,
28, 244-259.

Sancetta, A. and Satchell, S. (2004). The Bernstein Copula and Its Applications to Modeling and
Approximations of Multivariate distributions. Econometric Theory, 20, 535-562.
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