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1 Introduction

We consider a survey sampling point of view in order to estimate the mean curve of large databases

of functional data. When storage capacities are limited or transmission costs are high, selecting with

survey techniques a small fraction of the observations is an interesting alternative to signal compression

techniques. Our study is motivated, in such a context, by the estimation of the temporal evolution

of mean electricity consumption curves. The French operator EDF has planned to install in a few

years more than 30 millions electricity meters, in each firm and household, that will be able to send

individual electricity consumptions at very fine time scales. Collecting, saving and analyzing all this

information which can be seen as functional would be very expensive and survey sampling strategies

are interesting to get accurate estimations at reasonable costs (Dessertaine, 2008). It is also well

known that consumption profiles may depend on covariates such as past aggregated consumptions,

meteorological characteristics (temperature, etc) or geographical information (altitude, latitude and

longitude).

We compare in this work different ways of taking this information into account. A first one

consists in using simple sampling designs, such as simple random sampling without replacement, and

model assisted estimators (Särndal et al. 1992). A second strategy consists in considering unequal

probability sampling designs such as stratified sampling or πps that can take additional information

into account through their sampling weights.

The second question addressed in this work is how to build reliable confidence bands. When
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consistent estimators of the covariance function of the estimators are easy to build and the mean

estimator satisfies a Functional Central Limit Theorem (Cardot and Josserand, 2011), a fast technique,

inspired from Degras (2011), based on simulations of Gaussian processes in order to approximate the

distribution of their suprema can be employed. This new approach is compared to bootstrap techniques

which are also natural candidates for building confidence bands and that can be adapted to the finite

population settings (Booth et al. 1994, Chauvet, 2007).

2 Functional data in a finite population

Let us consider a finite population U = {1, . . . , k, . . . , N} of size N, and suppose we can observe,

for each element k of the population U , a deterministic curve Yk = (Yk(t))t∈[0,T ] that is supposed to

belong to C[0, T ], the space of continuous functions defined on the closed interval [0, T ]. Let us define

the mean population curve µ ∈ C[0, T ] by

µ(t) =
1

N

∑
k∈U

Yk(t), t ∈ [0, T ].(1)

Consider now a sample s, i.e. a subset s ⊂ U, with known size n, chosen randomly according to

a known probability distribution p defined on all the subsets of U. We suppose that all the individuals

in the population can be selected, with probabilities that may be unequal, πk = Pr(k ∈ s) > 0 for all

k ∈ U and πkl = Pr(k & l ∈ s) > 0 for all k, l ∈ U, k 6= l.

The Horvitz-Thompson estimator of the mean curve (Cardot et al. 2010), which is unbiased, is

given by

µ̂(t) =
1

N

∑
k∈s

Yk(t)

πk
=

1

N

∑
k∈U

Yk(t)

πk
1k∈s, t ∈ [0, T ].(2)

In this context, we can define µ̂srswor, the simple random sampling without replacement mean

estimator, by

µ̂srswor(t) =
1

n

∑
k∈s

Yk(t), t ∈ [0, T ].(3)

3 Estimators using auxiliary information

We consider now the particular case of stratified sampling with simple random sampling without

replacement in all strata, assuming the population U is divided into a fixed number H of strata. This

means that there is a partitioning of U into H subpopulations denoted by Uh, (h = 1, . . . ,H). We can

define the mean curve µh within each stratum h as µh(t) = N−1h
∑

k∈Uh Yk(t), t ∈ [0, T ], where Nh

is the number of units in stratum h. The first and second order inclusion probabilities are explicitly

known, and the mean curve estimator of µN (t) is

µ̂strat(t) =
1

N

H∑
h=1

n−1h Nh

∑
k∈sh

Yk(t), t ∈ [0, T ],(4)

where sh is a sample of size nh, with nh ≤ Nh, obtained by simple random sampling without replace-

ment in stratum Uh.

Auxiliary information can be taken into account to build strata in order to improve the accuracy

of the mean estimator. The sample size nh in stratum h is determined by a Neyman-like allocation,

as suggested in Cardot and Josserand (2011), in order to get a Horvitz-Thompson estimator of the

mean trajectory whose variance is as small as possible.
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Another interesting sampling design is the πps which can use directly auxiliary information.

Indeed, we defined the first inclusion probability by

πk = n
xk∑
k∈U xk

,(5)

where xk is a real auxiliary variable for these k. For some units, πk can be higher than one. To carry

out this problem, we select automatically these units. Then, we compute again the first inclusion

probabilities without the units already selected. We repeat this algorithm until all πk are lower or

equal to one. Using (2), we then obtain the πps mean estimator µ̂πps.

Instead of using the auxiliary information into the sampling design, we can adjust a linear model

and build a model assisted estimator µ̂ma. More precisely, we can write for all units k and t ∈ [0, T ]

Yk(t) = β0(t) + β1(t)xk + εkt(6)

where β0(t) and β1(t) are regression coefficients (see Faraway, 1997). Survey sampling weights are

taken into account to compute the estimates β̂0 and β̂1 of β0 and β1 (see Särndal et al. 1992). Finally,

we get the mean estimator, for t ∈ [0, T ],

µ̂ma(t) =
1

N

∑
k∈s

Yk(t)

πk
− 1

N

(∑
k∈s

Ŷk(t)

πk
−
∑
k∈U

Ŷk(t)

)
(7)

where Ŷk(t) = β̂0(t) + β̂1(t)xk, t ∈ [0, T ].

4 Confidence bands

In this section, we want to build confidence bands for µ of the form

(8) {[µ̂(t)± c σ̂(t)] , t ∈ [0, T ]} ,

where c is a suitable number and σ̂(t) is an estimator of γ(t, t)1/2, and where γ(s, t) = Var
(
µ̂(s), µ̂(t)

)
is the covariance function of µ̂. More precisely, given a confidence level 1 − α ∈]0, 1[, we seek c = cα
that satisfies approximately

(9) P (µ ∈ {[µ̂(t)± cα σ̂(t)] , ∀t ∈ [0, T ]}) = 1− α.

4.1 Suprema of Gaussian processes

We consider the process Z(t) =
(
µ̂(t)−µ(t)

)
/σ̂(t) which converges to a Gaussian process in the space

of continuous functions C([0, T ]), under some technical assumptions (Cardot and Josserand, 2011).

We can determine cα such that

(10) P (|Z(t)| ≤ cα, ∀t ∈ [0, T ]) = 1− α,

where Z is a Gaussian process with mean zero and correlation function ρ, and where ρ(s, t) =

γ̂(s, t)/
(
γ̂(s, s) γ̂(t, t)

)1/2
. Note that the calculus of cα with a Gaussian process is only possible

when one can build an estimator γ̂ of the covariance function γ.

4.2 Bootstrap bands

Another way consists in estimating the covariance function by bootstrap (Booth et al. 1994, Chauvet,

2007). Using the sample s, we can generate a fictive population U? and by simulation we obtain an

approximation of σ̂. The following algorithm permits to build confidence bands:
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1. Draw a sample s, with known size n, chosen randomly according to a known probability distri-

bution p, and to compute µ̂.

2. Duplicate each units k ∈ s 1/πk times to build a fictive population U?.

3. Draw in U? M samples s?j with size n according to p, and to generate µ̂?j (t), j = 1, . . . ,M.

4. The function σ̂(t) is estimated by the empirical standard deviation of µ̂?j (t), j = 1, . . . ,M.

5. Let Ecα = {j|∀t µ̂(t) ∈ [µ̂?j (t)− cασ̂(t); µ̂?j (t) + cασ̂(t)]}. The coefficient cα is chosen such that

#(Ecα) = (1− α)M.

The second step of this algorithm may causes some problems because 1/πk is not necessarily an integer.

This is detailed in the next section and was already discussed by Booth et al (1994) and Chauvet

(2007).

5 Study of mean electricity consumption curve

We consider now a population consisting in the N = 15069 electricity consumption curves measured

during one week every half an hour. We have d = 336 time points. Note that our auxiliary information

is the mean consumption, for each meter k, during previous week. We compare previous estimators

with fixed size n = 1500. For each estimator we compute the confidence bands with the Gaussian

bands and the bootstrap bands procedures. A draw back of Gaussian bands is that they require a

covariance function estimator γ̂ whereas bootstrap methods just needs some adjustment to build a

fictive population.

• µ̂srswor: For the simple random sampling without replacement estimator, we have an unbiased

covariance function estimator

(11)

γ̂srswor(s, t) =

(
1

n
− 1

N

) 1

n− 1

∑
k,l∈s

Yk(s)Yl(t)−
n

n− 1
µ̂srswor(s) µ̂srswor(t)

 , s, t ∈ [0, T ].

To build the fictive population in the bootstrap step 2, we can remark that 1/πk = N/n is not

an integer. So, we duplicate k ∈ s [N/n] times, where [.] is the entire part function. We complete

the duplication step with a simple random sampling without replacement in s with a fixed size

N − n[N/n], in order to obtain a fictive population U? which the size is equal to N .

• µ̂strat: The population is partitioned into H = 10 strata thanks to a k-means algorithm on

our auxiliary variable, the mean consumption during the first week. The covariance function is

estimated by

(12) γ̂strat(s, t) =
1

N2

H∑
h=1

Nh
Nh − nh
nh

γ̂h(s, t) s, t ∈ [0, T ],

where γ̂h is covariance function estimator into stratum h.

The fictive population U? is obtained by the same method used for µ̂srswor in each stratum h.

• µ̂πps: With the πps, it is difficult to obtain a formula for second inclusion probabilities because

they depend on how the sample is drawn and there is no standard method. When the sample
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size is fixed and the sampling design p is close to the maximal entropy, we can use the Hajek

formula (Berger, 1998) which can be adapted to approximate the covariance function

(13) γ̂πps(s, t) =
1

N2

∑
k∈s

(1− πk)
(
Yk(t)

πk
− R̂(t)

)(
Yk(s)

πk
− R̂(s)

)
s, t ∈ [0, T ],

where R̂(t) =
∑

k∈s
Yk(t)
πk

(1− πk)/
∑

k∈s(1− πk).

For the bootstrap, each k ∈ s is duplicated [1/πk] times. As suggested in Chauvet (2007),

to complete the population U?, we realize a πps sampling with an inclusion probability αk =

1/πk − [1/πk]. To keep a fixed sample size during the bootstrap step 3, we use the sampling

design p? defined for all k ∈ U? by

(14) π?k = n
xk∑

k∈U? xk
.

• µ̂ma: The covariance function of the model assisted estimator is complicated to explicit because

it depends on the sampling design and the model. By analogy with Breidt and Opsomer (2000),

we have an asymptotic covariance estimator

(15) γ̂ma(s, t) =
1

N2

∑
k,l∈s

(
Yk(s)− Ŷk(s)

)(
Yl(t)− Ŷl(t)

) πkl − πkπl
πkπlπkl

s, t ∈ [0, T ],

where πk = n
N et πkl = n(n−1)

N(N−1) for k, l ∈ s and k 6= l. To build the bootstrap bands, we

adapt an algorithm of Helmers and Wegkamp (1998) to our case. For each sample s, we have

ε̂kt = Ŷk(t) − β̂0(t) − β̂1(t)xk for all k ∈ s. We then draw n iid realizations Z1, . . . , Zn of a

centered gaussian variable with unit variance and consider

(16) Y ?
k (t) = β̂0(t) + β̂1(t)xk + Zk ε̂kt t ∈ [0, T ].

By a simple random sampling without replacement in the fictive population U?, we obtain the

mean estimator for s?

(17) µ̂?ma(t) =
1

N

∑
k∈U

Ỹk(t)−
1

N

∑
k∈s?

Ỹk(t)− Yk(t)
πk

t ∈ [0, T ].

where Ỹk(t) = β̂?0(t) + β̂?1(t)xk for all k ∈ U , β̂?0 and β̂?1 are model parameters computing on s?,

and πk = n/N for all k ∈ s?.

We will present in details the simulation results for these estimators during the talk. Briefly, we

note that both methods employed to build the confidence bands give almost the same coverage and

are close to nominal level of confidence. Moreover, confidence bands areas are very close too. The

Gaussian processes simulation bands are much faster to compute but require a reliable estimator of

the covariance function. On the other hand, the bootstrap bands can be long to generate but need

nothing more than the basic estimator.
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