Int. Statistical Inst.: Proc. 58th World Satistical Congress, 2011, Dublin (Session CPS046) p.5035

Estimation of Distortion Risk Measures

Hideatsu Tsukahara
Department of Economics, Seijo University, Tokyo
e-mail address: tsukahar@seijo.ac.jp

The concept of coherent risk measure was introduced in Artzner et al. (1999). They
listed some properties, called axioms of ‘coherence’, that any good risk measure should
possess, and studied the (non-)coherence of widely-used risk measure such as Value-at-
Risk (VaR) and expected shortfall (also known as tail conditional expectation or tail VaR).
Kusuoka (2001) introduced two additional axioms called law invariance and comonotonic
additivity, and proved that the class of coherent risk measures satisfying these two axioms
coincides with the class of distortion risk measures with convex distortions.

To be more specific, let X be a random variable representing a loss of some financial
position, and let F(z) := P(X < z) be the distribution function (df) of X. We denote
its quantile function by F~!(u) := inf{z € R: Fx(x) > u}, 0 < u < 1. A distortion risk
measure is then of the following form

R

= _1u u) = x o x
po(X) = /MF (W) dD(w) = [ 2dDo F(a), (1)

where D is a distortion function, which is simply a df D on [0, 1]; i.e., a right-continuous,
increasing function on [0, 1] satisfying D(0) = 0 and D(1) = 1. For p,(X) to be coherent,
D must be convex, which we assume throughout this paper. The celebrated VaR can be
written of the form (1), but with non-convex D; this implies that the VaR is not coherent.
Also note that different authors use different names spectral risk measure or weighted V@QR
for a distortion risk measure.

The most well-known example of coherent risk measure is the above-mentioned ex-
pected shortfall. Taking distortion of the form DES(u) = a=!u — (1 — a)]+, 0<axl1
yields the expected shortfall as a distortion risk measure:

1 1
ESq(X) :_/ F~(u) du.
& Ji—a
The following one-parameter families of distortion yields several classes of coherent risk

measures:

e Proportional hazards (PH) distortion: D™ (u) =1 — (1 —u)?,
e Proportional odds (PO) distortion: DFO(u) = 0u/[1 — (1 — 0)u]
o Gaussian distortion: DG*(u) = ®(®~(u) + logd)

To implement the risk management/regulatory procedure using risk measures, it is
necessary to statistically estimate their values based on data. For a distortion risk measure,
its form (1) suggests a natural estimator which is a simple form of an L-statistic. The main
theme of this paper is to derive the asymptotic statistical properties of simple estimators of
those risk measures based on strictly stationary sequences, and to compare some distortion
risk measures and VaR.
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Let (X,,)nen be a strictly stationary process with a stationary distribution F', and
denote by I, the empirical df based on the sample Xi,...,X,,. A natural estimator of
p(X) is given by

1 n
Op = Ly u) = CniXnsi
P = /0 B (0 dD() = 3 Ko (2)

where ¢,; := D(i/n) — D((i — 1)/n) and X1 < X0 <+ < X, are the order statistics
based on the sample Xq,...,X,,.

In what follows, instead of restricting ourselves to the particular form (2) of L-statistic,
we consider a general L-statistic of the following form:

1 n
Tn = - Z Cnih(Xn:i)7 (3)
i
where ¢,,;’s are constants. Define for 0 < u <1,

Juw) = 3 ni (o) () + et Loy (), W) = /1 Jn(v) dv
=1
Then we have

1
= —1 U u)du = —1 U u).
T, - /0 B ()T (u) d / B(FS (u)) AT, ()

[0,1]

Let g := ho F~!, and define the centering constants

1
fn, ::/0 g(u)Jp(u)du = /[071} g(u) dW, (u).

Consistency is a basic desirable property of statistical estimators. The following result
was proved in van Zwet (1980) for the i.i.d. case, but his proof remains to be valid for the
ergodic case.

Proposition 1 Suppose that X1, Xs, ... forms an ergodic stationary sequence. Let 1 <
p < o0, 1/p+1/q =1, and assume that J,, € LP(0,1) forn =1,2,..., and g € L1(0,1). If
either

(i) 1 < p < oo and sup,, E(|J,|?) < oo, or

(ii)) p=1 and {J,, n=1,2,...} is uniformly integrable,
then we have T,, — u, — 0, a.s..

Further, if there exists a function J € L, such that lim, fg Jn(s)ds = fg J(s)ds for
every t € (0,1), then T, — f[o,l] J(s)dg(s), a.s. By this result, in particular, our estimator
Pn in (2) of distortion risk measure proves to possess strong consistency under the very
general conditions stated above.

For the asymptotic normality, we basically draw upon Shorack and Wellner (1986),
Chapter 19, for the form of assumptions and the line of argument. First we set out the
following assumption on (X,).

p.5036
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A1) (X,)nen is strongly mixing: Setting F =0 Xi,...,X;), the strong mixing coeffi-
) J
cient

a(n) := sup {\P(A NB)— P(A)P(B)|: Ac FF,Be 73, k> 1}
converges to 0 in such a way that

a(n) = 0(n=%") for some § > 142, >0

Note that strong mixing assumption is the weakest requirement among various mixing
concepts. Next we assume the bounded growth of g and J,,, and smoothness of J,,.

(A.2) h is a function of bounded variation: h = h; — hg, where h; and hy are increasing,
left-continuous, and satisfy

|hi(F~Y(w))| < H(u), forall0<u< 1,
where H(u) := Mu~% (1 —u)~%.

For ¢ = ho F~1, let [ dg be the integral with respect to the Lebesgue-Stieltjes signed
measure associated with g, and [ d|g| be the integral with respect to the total variation
measure associated with g.

(A.3) There exists a function J which is |g|-a.e. continuous such that .J,, converges to J
locally uniformly |g|-a.e.

(A.4) For B(u) :== Mu=" (1 —u)~%, |J,(u)| < B(u), |J(u)| < B(u) for all 0 < u < 1 with
b1 Vby <1.

We note that under (A.2) and (A.4),

1
|t = B digln) < o0 (4)
when r > (by +di) V (b2 + d2) (see Shorack and Wellner (1986), Lemma 19.1.1).

Before we state and prove the asymptotic normality of the estimator (2), let us note
that it is possible to reduce the argument to the uniform case, as in the i.i.d. case. Namely,
there exists a strictly stationary sequence (&, )nen with the same mixing rate as (X,,) such
that X,, = F~1(¢&,) and &, ~ U(0, 1) (on a possibly extended probability space; see Lemma
4.2 in Dehling and Philipp (2002)). Let G,, be the empirical df based on &1, ...,§,. Then

T £ = [ () [0 (Gafu) ~ Valw)]. (5)
[0,1]

Here X £ Y means that the random variables X and Y have the same distribution.
Let Ck(u,v) :=P(& < wu, § < v) and put

(uv)—u/\v—uv—i—ZCkuv—uv —l—ZC’kvu—uv] (6)
k=2 k=2

When (&,,) satisfies the same mixing rate as in (A.1), it follows from the covariance inequal-

ity (see Dehling and Philipp (2002), Lemma 3.9) that the two series on the right-hand side

of (6) are absolutely convergent. We define the empirical process U, (u) := /n(Gy(u) —u)

as usual.
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Theorem 2 Let (X,,)nen be a strictly stationary sequence satifying (A.1)—(A.4) with

2b;+1 1

b; + d; =
+d; + 20 < 5

i=1,2 (7)

Then we have
V(T — i) = N(0,02),
where

11
2.
o .—/0 /0 o(u,v)J(u)J(v)dg(u)dg(v) < oo (8)

Returning to the problem of estimating distortion risk measures, we should set ¢,; =
n[D(i/n) — D((i —1)/n)] and h(z) = x. Then in most cases, the limit of .J,, will be d, so
applying Theorem 2 we have the following corollary.

Corollary 3 Assume (A.1), (A.2) with h(x) = z, (A.3) with J = d, and (A.4). Then, for
the estimator p,, of (2), we have

Vi(pn — p(X)) -5 N(0,02),

where

1 r1
2 = w,v)d(u)d(v _1u _11).
a—/()/off(,)d()d()dF (w)dF ()

When we try to construct approximate confidence intervals for risk measures, we need
to estimate the asymptotic variance (8). Let

Y, = /[XWO) J(F(z))dh(z), neZ.

It is then easy to see that o2 is written as the double-sided infinite sum of autocovariance
~v(n) of the stationary sequence (Y;,). It is well known that

o0

> y(n) =21£(0),

n=—oo

where f is the spectral density of 7. Thus our problem is to estimate f(0), and we would
use a consistent estimator of f(0) as given in Brockwell and Davis (1991). But F in the
expression of Y, is unknown, so we must replace it with the empirical distribution function.
That is, we use

Y e / JFo(2))dh(z), i=1,....n
[Xivoo)
in estimating f(0). This should give a consistent estimator of the asymptotic variance (8).

Example 4 (Inverse-gamma autoregressive stochastic volatility) In order for us
to be able to compute the true values of various risk measures with adequate accuracy
so that we can evaluate the estimation bias and root mean squared error (RMSE), we
introduce the following simple stochastic volatility model. Let X; = 0:Z; and suppose
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that V; := 1/07 follows the first-order autoregressive gamma process introduced in Gaver
and Lewis (1980):
Vi=pVi1 +e,

where V; has a gamma distribution with shape parameter o and inverse-scale parameter
G for each t, (g¢) is a sequence of i.i.d. random variables, and 0 < p < 1. It is known that
the distribution of ¢4 is compound Poisson.

Let (Z;) be a sequence of independent random variables with standard normal distri-
bution, which are also independent of (¢;). Then it is well known, especially in Bayesian
analysis, that X; has a scaled t-distribution with 2« degrees of freedom and scale papram-
eter 02 = 3/a; this allows us to calculate the true values of VaR, expected shortfall, and
proportional odds risk measure. Also (V;) can be shown to be geometrically ergodic, so
the resulting (X;) is also geometrically ergodic, and hence exponentially strong mixing.
Thus our assumption (A.1) is satisfied in this model.

To make use of the setting in Example 2.21 of McNeil et al. (2005), we chose o = 2,
6 = 16000, p = 0.5, so that X; has a scaled t-distribution with four degrees of freedom,
and its standard deviation is equal to 2000/4/250 =~ 126.5. For this case, the true values
of VaR, expected shortfall, and proportional odds risk measures are given in Table 4.1 of
Tsukahara (2009). For § = 0.1, 0.05, 0.01, we generated 1000 samples of size 500 and
computed the estimates, the estimated biases, and the RMSEs for our estimator. For the
purpose of comparison, we also perform the same procedure with i.i.d. observations from a
scaled t-distribution with four degrees of freedom. The results are summarized in Table 1.

Table 1: Simulation results for estimating VaR, ES and PO risk measures with inverse-
gamma autoregressive SV observations with ¢(4) marginal and with i.i.d. ¢(4) observations
(n =500, # of replication = 1000)

VaR ES PO

0=« bias RMSE bias RMSE bias RMSE

0.1 0.0692 10.9303 —2.2629 22.1361 —1.7739 17.5522

SV 0.05 2.5666 17.6755 —1.2168 37.2719  —2.0200 28.5053
0.01  14.9577 61.2290 —11.9600 103.9269 —15.7888 73.7147

0.1 0.7976 10.5893  —1.2914  19.5756 —1.3574 15.3271

iid.  0.05 0.7974 16.1815 —2.6346 31.3166 —2.8342 23.9933
0.01 10.6838 53.2567 —12.9355 95.9070 —15.8086 69.5425

They show clearly that both biases and RMSEs increase for all three risk measures as
0 gets smaller; this is expected from the asymptotic results. Hence estimation with small
0 is a difficult task even with moderate sample size of n = 500. Maybe this shows the
limitation of purely statistical methods for estimating the values of risk measures.

The estimated RMSEs are large probably reflecting the heavy tail of the ¢-distribution
with four degrees of freedom. Although RMSE is slightly smaller for every risk measure in
the i.i.d. case, there does not seem to be a big difference in the behavior of the estimates
between in the stochastic volatility case and i.i.d. case, reflecting perhaps the quite weak



Int. Statistical Inst.: Proc. 58th World Satistical Congress, 2011, Dublin (Session CPS046) p.5040

dependence in this stochastic volatility model.

Note that systematic negative biases are observed for our L-statistics type estimators in
cases of expected shortfall and proportional odds risk measures. Examining the histograms
(not shown here) shows that the distribution of the estimator is right-skewed with this
sample size. We suggest that some kind of bias reduction method be applied in practice.

REFERENCES

Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath (1999). Coherent measures of risk.
Mathematical Finance, 9, 203—228.

Brockwell, P. J. and R. A. Davis (1991). Time Series: Theory and Methods, New York:
Springer-Verlag.

Dehling, H. and W. Philipp (2002). Empirical process techniques for dependent data.
In H. Dehling, T. Mikosch and M. Sgrensen (eds.), Empirical process techniques for
dependent data, Boston: Birkh&user, p.p. 3—113.

Gaver, D. P. and P. A. W. Lewis (1980). First-order autoregressive gamma sequences
and point processes, Advances in Applied Probability, 12, 727-745.

Kusuoka, S. (2001). On law invariant coherent risk measures, Advances in Mathematical
Economics, 3, 83-95.

McNeil, A. J., R. Frey, and P. Embrechts (2005). Quantitative Risk Management: Con-
cepts, Techniques, and Tools, Princeton, New Jersey: Princeton University Press.

Shorack, G. R. and J. A. Wellner (1986). Empirical Processes with Applications to Statis-
tics, New York: John Wiley & Sons.

Tsukahara, H. (2009). One-parameter families of distortion risk measures, Mathematical
Finance, 19, 691-705.

van Zwet, W. R. (1980). A strong law for linear functions of order statistics, Annals of
Probability, 8, 986-990.



