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1 Introduction 
Measurement error potentially affects all statistical analysis, because it causes the probability 

distribution that generates the observable data to deviate from that which generates the unobservable. The 
effect of measurement error on the properties of estimators and testing procedures, particularly in the context 
of parametric models are studied by many authors. Fuller (1987) give detailed accounts of this work and 
comprehensive literature. The main effect of the error in the parametric estimators is that these are biased. On 
the opposite side, in the context of nonparametric models Fan (1991) ,proposed unbiased nonparametric 
estimators for the density function, distribution function and nonparametric regression function . The present 
paper focuses on the estimation of distribution functions and studies the impact of measurement error in the 
context of nonparametric estimation. This problem was first studied in Fan (1991), in Ioannides and 
Papanastasiou (2001), Hesse (1995) and more recently by Hall and . Lahiri (2009) and . Kulik (2009). All the 
above authors studied asymptotic properties of the nonparametric estimator for the distribution proposed by 
Fan (1991) in the i.i.d case or in the dependent case assuming that the variance σ2 of the measurement error 
is fixed . Delaigle (2008) study a related problem by considering that the variance σ2 of the measurement 
error goes to 0 . Here, we are using a modify estimator of Fan which is biased and we calculate its bias in 
terms of the error variance σ2 . Thus for    σ2→0  the bias  is negligible , and the main source of error for 
the approximation of the target distribution  comes from its  nonparametric kernel estimator . For σ2 large  
there is an additional error  which  is calculated  from  the second derivative estimator.  Our paper is 
organized as follows. In Section 2 the construction of our estimator is given. Our results are presented in 
Section 3 with the general assumptions under which these are obtained.  
 
 
2  Construction of the estimator 

The deconvolution kernel estimator was first considered by Carroll & hall (1988). Let us recall briefly 
here its construction. the variable of interest X is measured with error and is not directly observable. Instead 
X is observed through 

 
                                    (2.1) 
 
It is assumed that the variable ε has a known distribution and is independent of X . Given a random 

sample could we estimate the density of X ? 
Denote by ( )tY , ( )tX  and ( )t ) the characteristic function of Y ( resp. X and ε ). We have 

( ) ( ) ( )t t tY X     .  
If we assume to have a non-vanishing characteristic function, then by Fourier inversion, the density of 

X is given by  
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A classical nonparametric estimator of f ( )uY  is given by, 
1( ) ( )
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Where K is the kernel and hn  is the bandwidth. In order to obtain an estimator for  ( )tY , we replace 

f ( )xX  by its nonparametric estimator. Using this last estimator in equation (2.2), we get an estimator of 

(2.2) by 
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where the deconvolution kernel is given by 
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In this paper we are interesting to estimate the distribution function of X. This was done by Fan (1991) 
leading to: 

( ) ( )F x f z dzn nX

A

 
       (2.5) 

with ( , ]A x   We can  rewrite (2.5) as : 
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with ( , ]A x  . Under some conditions Wn( x )  is  integrable, and thus  as an estimator for the 

distribution of X  can be considered the modify estimator  of Fan   ( )( )
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3  Assumptions and Results   

 
The model that we assume for the data is as follows. The observable r.v.’s are  
 
 

εj j j ,Y X  1i ,...,n,    
 
where  1 nX ,...,X ,  are the first n  r.v.’s from the stationary process    1jX , j  , with continuous 
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d.f. 
XF  and 1ε εn,...  the first n  r.v.’s from the  noise stationary process  ε 1j , j  , which is 

independent of the unobservable process   1jX , j   , and has a known probability density function .  The 
distribution of each jY  is the convolution of the distributions of jX  and ε j , and  thus as  a 
nonparametric estimator  of  

XF  can be considered the modify estimator of Fan given in (2.6) ,  with the 
only difference that here  our data  1 nY ,...,Y , are  the first n  r.v.’s from the stationary process 
  1jY , j   .   

In this section , we establish the asymptotic normality for our estimator  ( )F xn . We impose the 
following assumptions which are summarized here for easy reference.  

 
Assumption (A)  

(i) The process  ε 1j jX , , j   is strictly stationary and  ρmixing with mixing coefficient  
ρ k( j ) O( j ),  for 2k  .   

(ii) The process   1jX , j   is strictly stationary and independent to the strictly stationary 
process   ε 1j , j   

(iii)  The density f is twice differentiable and support on R.  
 

Assumption (D)  

We assume that the integral  ( )W u dun





  exists for every n, as  n  .  
 

Remark 3.1. Conditions under which Assumption (D) holds are given in Fan (1991).  
Theorem 3.1. If assumptions (A) and (D) are satisfied and the second derivative of the density function is 

bounded, then: 2( ) ( ) ( ) 0EF x F x F xn      ,  as  n . 

Proof : Working similar as in Ioannides & Papanastasiou (2001) (Lemma 3.1 (i))  and using relation  
(2.4) from A. Chesher(1991)  our result follows immediately .  

Theorem 3.2. If assumptions (A) and (D) are satisfied and the second derivative of the density function is 

bounded, then ( ( )) ( )(1 ( ))Var F x F x F xn X X   

as  n . 
Proof: Similar as in Ioannides & Papanastasiou (2001) (Lemma 3.1 (ii)).  

Theorem 3.3: If assumptions (A) and (D) are satisfied and the second derivative of the density function is 

bounded, then : 0 1F ( x ) N( , )n , in distribution as n . 

Proof : The result follows easily if we are working  similar as in Theorem 2.1 of Ioannides & 

Papanastasiou (2001).  
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ABSTRACT 
 

A nonparametric estimator for a smooth distribution function based on contaminated observations was first 
considered by Fan. A method is developed to establish asymptotic normality results for the modified 
estimator and for weakly stochastic processes corrupted by some noise process. Our estimator is biased, and 
the bias part of is calculated under some weak conditions. The asymptotic normality is obtained under very 
general assumptions on the error characteristic function, which generalizes previous conditions on this topic. 
Some simulations results are given. 
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