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INTRODUCTION

Methods of analysis of capture-re-encounter data involve fitting probability models to data col-
lected from animals that have been previously given unique markings. Re-encounters can correspond
to finding animals dead (recoveries), or capturing/resighting them alive (recaptures). For illustration
in this paper we shall consider both the case of finding animals dead and also that of finding animals
alive, at various times following marking. The model parameters are appropriate probabilities of an-
nual survival, as well as probabilities of reporting/recapture of dead/live animals, respectively. An
illustrative recovery data set is provided in Table 1, which is a subset of one of the data sets analysed
in this paper. The full data set is available at www.tibs.org. The data correspond to birds being
ringed throughout Britain, and later reported dead to the address on the rings.

Table 1 Recovery data on British grey herons, Ardea cinerea, ringed between 1987 and 1997. Data
provided by the British Trust for Ornithology

Year of recovery
Year of ringing | 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 | Never recovered
1987 20 6 3 3 3 1 0 0 1 1 1 539
1988 11 8 5 2 2 0 1 1 0 1 467
1989 18 12 1 4 2 1 3 0 2 484
1990 28 5 2 3 0 2 0 0 556
1991 10 6 3 0 1 1 0 471
1992 21 2 0 0 0 1 541
1993 26 5 2 1 1 537
1994 20 6 3 1 546
1995 23 5 2 653
1996 16 0 494
1997 18 700

A range of models results from different assumptions regarding time- and age-variation of parame-
ters. Simplifications may result from appropriate regressions on time-varying covariates, and the first
instance of this being done is to be found in the paper by North and Morgan (1979), for a subset of
the heron data illustrated in Table 1. Logistic regression for survival probabilities was used, and this
is now often adopted for survival, recapture and reporting probabilities. More recently Gimenez et al
(2009) have presented a more flexible approach, based on P-splines. The incorporation of covariates
in models for capture-re-encounter data is now widespread (see Morgan,2006), and often complex.
For instance, complexity can arise if there are several age-classes for survival, with different covariate
regressions in each (see Catchpole et al, 2000). The area is one of current research; see for example
Catchpole et al (2008) and Bonner et al (2010), who deal with missing covariate information. In
this paper we provide a brief outline of new approaches to three important issues that are still to be
resolved. The research is based in part on the thesis of Brown (2010), and will be described fully in
papers currently being prepared for journal publication.
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USING LOCAL WEATHER COVARIATES

The (global) covariate used by North and Morgan (1979) was the number of days below freezing
in each year in Central England. However dead herons are recovered and reported widely, and it is
natural to consider whether there are local weather alternatives. The approach to this adopted by
Brown (2010) was to use weather data from a range of weather stations, available from the internet,
and to smooth these using thin-plate splines. It was then possible to interpolate from the spline
surface to obtain a measure of the weather for the location at which dead birds were found. The
weather-station data are irregularly spaced, and it is possible to fit a thin-plate spline surface, as we
know the longitude and latitude of each station. The fitting of the thin-plate splines is achieved using
the contributed R package “fields”!.

A thin-plate spline surface results from minimising the residual sum of squares as in ordinary
least squares, subject to a constraint which governs the smoothness of the fitted function. A penalised
residual sum of squares results, which is

R(g) = > {Yi — g(z)}* +0J(9)

where z; are points in two-dimensional space, Y; is the temperature and g is a suitable smooth function
such that g(z;) = g; for i = 1,...,n where g; is the temperature at the point z;.
In the two-dimensional case, as here, the smoothness is governed by a roughness penalty which
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and a smoothing parameter 7. The thin-plate splines method finds the smoothing parameter, 1, using

is

generalised cross validation. In the cases where 1 cannot be found, which are rare, we let n = 0.3 as it
represents a reasonable compromise between over-fitting and under-fitting of the surface to the data.

In an application on Blackbirds, Turdus merula, data were obtained from 44 weather stations
throughout Germany, combined with climate indices such as the North Atlantic Oscillation, the NAO.
The approach worked well, with spring and summer measures affecting the survival of young birds.
Spring and summer temperature logistic regression coefficients were, respectively, 0.36(0.096) and
-0.40(0.103), and for Spring rain, the value was -0.14(0.060). These values make biological sense.

As a simulation check of the approach, we present in Table 2 a comparison of the performance
of models fitted assuming no covariates, local covariates and global covariates. We can see that it is
important to include weather covariates when they are present in the simulations, that the thin-plate
spline method performs the best, and the improvement, compared to the use of a global variable,
becomes more marked the larger the size of the simulation grid.

Table 2 A AIC values in a simulation study to compare the use of local weather covariates smoothed
with thin-plate splines, global weather covariates, and no covariates, when mark-recovery data were
simulated using local weather covariates. Here r denotes the size of the weather grid.

r 0.1 0.2 0.3 0.4 0.5
local 0 0 0 0 0
global 10.7 43.9 89.1 165.7 229.8
none 312.9 309.3 380.3 408.9 507.7

available at http://www.r-project.org
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VARIABLE SELECTION USING THE LASSO

Catchpole et al (1999) undertake variable selection using a method based on the use of score
tests. King et al (2006) use reversible-jump MCMC. As an alternative, Brown (2010) considered the
merits of the lasso. This may be done in one of two ways. One is by obtaining survival parameter
estimates for each year, following model-fitting by maximum likelihood, and then applying a standard
lasso approach to the resulting parameter estimates, treating them as the response variables. This is
faster and simpler than the alternative approach in which the lasso becomes an integral feature of a
mark re-encounter analysis. The two approaches have resulted in similar performance when applied
to real examples, by Brown, 2010. For example, for mark-recapture data spanning 16 years on white
storks, Ciconia ciconia, with 10 weather stations from Germany, there are potentially 1024 alternative
models to consider. Here the lasso approaches readily identified the information from just one weather
station as the sole covariate to be included in the model for annual survival. This conclusion agrees
with more complex alternative Bayesian approaches to the data.

MODELLING CONDITIONAL DATA

Quite often cohort sizes are either unknown or unreliable; we note that the analysis of North and
Morgan (1979) did not involve cohort numbers, which were unavailable at that time. Quite often also,
recent years have seen a decline in the reporting probability; see Baillie and Green (1987) and Mazetta
(2010). The widely-used computer package for the analysis of capture-re-encounter data, MARK
(White and Burnham), only allows a constant reporting probability (model denoted Constant in the
results below) for the conditional analysis of mark-recovery data which result when cohort numbers
are not used in the analysis. Robinson et al (2007) state that this is the only possibility for conditional
analysis, however it has been shown by Cole and Morgan (2010) that models with appropriate time-
regressions of the reporting probability may be fitted to mark-recovery data in conditional analyses.
Here we propose a scaled-logistic model, in which

M=K, t<T

2K

M D

t>T
where 7 is a time to be estimated, indicating the start of a decline in reporting probability. We note
that the parameter x will not enter the conditional analysis due to cancelation.

For a model with two annual survival probabilities, ¢ and ¢,, corresponding to first-year and
older birds respectively, each logistically regressed on a weather covariate denoting the number of days
below freezing in Central England (see Besbeas et al, 2002), we obtain the results shown in Figure 1
when models are fitted to the heron data. For comparison we also provide the results using the cohort
numbers (denoted Scaled logistic (unconditional data)). We can see the very good agreement between
the analyses with and without using the cohort numbers, and the appreciable bias that results from
using the model with assumed constant reporting probability.
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Figure 1. A comparison of survival estimates for the heron data for three models described in the text
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We now present in Figure 2 a simulation study of the bias that can result from using an incorrect
model for the reporting probability in conditional analyses only. For comparison, we also include a
model in which the reporting probability has a standard logistic regression on time (denoted logistic)
and also a model which has the form

1
)\,5:71_{_6)\041L t<7’,

1

At = 1+ ratrslt—7)

t>T,

which we denote as the Delayed logistic model.

Both the scaled logistic and delayed logistic models produce unbiased estimate of survival probability.
As expected, the constant model, which fails to account for any time variation in reporting probability,
results in underestimates of survival. Further, we observe that the logistic model, which ignores
the period of constant recovery before a decline commences, results in overestimates of the survival
probability. It is therefore interesting that a naive approach to modelling the decline in reporting
probability over time, by the logistic model, proves to be inadequate. We also note the superior
performance of the scaled logistic model compared to the delayed logistic model, with regard to the
bias of the slope parameter Ag.
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Figure 2. A simulation study to compare the performance of four alternative models for the reporting
probability; mle denotes maximum-likelihood estimate for A, which is only available for two models.
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DISCUSSION AND FURTHER WORK

We have described three new approaches to the analysis of capture-re-encounter data when
covariates are involved. These are important in reducing bias in estimates of annual survival, so that we
can better understand how wild animals survive, and whether there are changes due to corresponding
changes to the climate. Results have only been presented in outline here, and the references to the
paper provide far more detail with regard to the background and recent research. There is still more
research to do in these areas, for instance, for illustration, the conditional modelling of the heron data
considered just one out of a set of alternative models, without due regard to model-selection. The
maximum-likelihood estimate of the parameter 7 was obtained from a profile log-likelihood, resulting
in 7 = 13. Similar values have been obtained for the corresponding analysis of data on other British
bird species, and good results have been obtained with the scaled logistic model by assuming the same
parameters for the decline in reporting probability in a combined analysis of several species, to be
reported elsewhere. Further research is needed to determine how viable this conditional approach is
when data are sparse, and also whether small values for 7 might adversely affect the analysis. The
interpolation approach for weather covariates could potentially be extended to include time- as well
as space-variation. In the work done here so far, no account has been taken of the errors resulting
from the fitting of the spline surface, and this is an area for future research. We note finally that the
lasso approaches provide a simple classical solution to the selection of weather covariates in models
for mark re-encounter data.
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RESUME (ABSTRACT)

Covariates have been used to model parameters in capture-recapture methods in ecology since
the paper by North and Morgan (Biometrics, 1979). In this paper we consider a variety of issues that
remain to be answered, including how to select covariates, how to deal with spatial information and
how to include time-variation in recovery probabilities for conditional analysis of ring-recovery data.



