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Brno 611 37, Czech Republic

E-mail: kolacek@math.muni.cz

Vopatová, Kamila
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Introduction

The most important factor in the multivariate kernel density estimate is a choice of the band-

width matrix. Because of its role in controlling both the amount and the direction of multivariate

smoothing, this choice is particularly important. Most of popular bandwidth selection methods in a

univariate case (see e.g. Scott (1992), Wand and Jones (1995)) can be transferred into multivariate

settings (Duong and Hazelton (2005), Chacón and Duong (2010)). Also a special iterative method

proposed by Horová and Zelinka (2007) has been extended to bivariate case with diagonal bandwidth

matrix (Horová et al. (2008) and Horová et al. (2010)). The advantage of the proposed method con-

sists in the fact that it does not need any pre-transformation of the data. The present paper focuses

on a d-variate case and a full bandwidth matrix.

Univariate kernel density estimation

Density derivative estimation

Let X1, . . . , Xn be independent real random variables having the same density f . The basic

kernel estimate of the ν-th derivative with a kernel K at the point x ∈ R can be written as

f̂ (ν)(x, h) =
1

nhν+1

n∑
i=1

K(ν)

(
x−Xi

h

)
,

where K is a kernel and h > 0 is a smoothing parameter called also a bandwidth.
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First, we make some assumptions and notations:

• lim
n→∞

h = 0, lim
n→∞

nh2ν+1 =∞, 0 ≤ ν

• f ∈ Ck0 , ν + k ≤ k0, 0 ≤ ν < k, ν, k are nonnegative integers

• K ∈ Cν [−1, 1], K(j)(−1) = K(j)(1) = 0, j = 0, 1, . . . , ν − 1, V (g) =
∫
g2(x)dx

• Sνk is a class of real valued functions on R satisfying conditions

(i) support(K) = [−1, 1]

(ii)
1∫
−1
xjK(x)dx =


0, 0 ≤ j < k, j 6= ν

(−1)νν!, j = ν

βk 6= 0, j = k.

Hereinafter, it is assumed K ∈ S0k ∩ Cν [−1, 1], i.e. K(ν) ∈ Sν,k+ν .

We consider Mean Integrated Square Error as a criterion of the quality of the estimate

MISE{f̂ (ν)(·, h)} = E

∫
{f̂ (ν)(x, h)− f (ν)(x)}2dx.

Since MISE is not mathematically tractable, we employ an asymptotic mean integrated square er-

ror (AMISE) which can be written as a sum of an asymptotic integrated variance and asymptotic

integrated square bias

(1) AMISE{f̂ (ν)(·, h)} =
V (K(ν))

nh2ν+1︸ ︷︷ ︸
AIvar f (ν)

+h2k
β2k+ν

(k + ν)!2
V (f (k+ν))︸ ︷︷ ︸

AIbias2 f (ν)

and the optimal bandwidth minimizing AMISE, hopt,ν,k = arg min AMISE{f̂ (ν)(·, h)}, takes the form

(2) h
2(k+ν)+1
opt,ν,k =

(2ν + 1)V (K(ν))

2(k − ν)nV (f (k+ν))

(k + ν)!2

β2k+ν
.

Thus hopt,ν,k = O
(
n−1/2(k+ν)+1

)
and AMISE{f̂ (ν)(·, h)} = O

(
n−4/2(k+ν)+1

)
.

Choosing of the optimal bandwidth

The optimal bandwidth minimizing AMISE depends on the unknown density f and thus we

turn our attention to data driven bandwidth matrix selectors. Härdle et al. (1990) have proposed the

modified cross-validation for the first derivative estimate. The objective function is defined as

CV(ν)(h) =

∫
(f̂ (ν)(x, h))2dx− 2

(−1)ν

n

n∑
i=1

f̂
(2ν)
−i (Xi, h),

where f̂
(2ν)
−i is the estimate of the 2ν-th derivative of f at the point Xi without using this point.

We are going to extend the iterative method proposed in paper Horová and Zelinka (2007) to the

estimate of ν-th derivative. This method is also based on a suitable estimate of MISE{f̂ (ν)(·, h)} and

on the fact that

(3)
2ν + 1

2k
AIvarf̂ (ν)(·, hopt,ν,k) = AIbias2f̂ (ν)(·, hopt,ν,k)
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Further, we use the estimates of quantities at this equality

AIv̂arf̂ (ν) =
1

nh2ν+1
V (K(ν))

and

AIb̂ias
2
f̂ (ν) =

∫ (∫
K(x)f̂ (ν)(x− hy, h)dy − f̂ (ν)(x, h)

)2

dx

=
1

n2h2ν+1

n∑
i,j=1

Λ(2ν)

(
Xi −Xj

h

)
,

where

Λ(2ν)(z) =
∂2νΛ(0)(z)

∂z2ν

and

Λ(0)(z) = Λ(z) = (K ∗K ∗K ∗K − 2K ∗K ∗K +K ∗K)(z)

Consider equation (3) in the form

(4)
2ν + 1

nh2ν+1
V (K(ν))− 2k

1

n2h2ν+1

n∑
i,j=1

Λ(2ν)

(
Xi −Xj

h

)
= 0.

Let ĥIT,ν,k be a solution of this equation. The statistical properties of this estimate are given in the

following theorem.

Theorem 1.

E(Ib̂ias
2
f̂ (ν)) = Ibias2f̂ (ν) + 1

nh2ν+1 Λ(2ν)(0) + o(h2k)

var(Ib̂ias
2
f̂ (ν)) = 8k2

n2h4ν+1V
(
Λ(2ν)

)
V (f) + o(h4k + n−2h−(4ν+1)).

Corollary.

ĥIT,ν,k
hopt,ν,k

P→ 1.

Multivariate kernel density estimation

Let a d-variable random sample X1, . . . ,Xn come from distribution with a density f . The kernel

density estimator f̂ is defined

f̂(x, H) =
1

n

n∑
i=1

KH(x−Xi) =
1

n
|H|−1/2

n∑
i=1

K(H−1/2(x−Xi)).

H is a symmetric positive definite d × d matrix called the bandwidth matrix, where |H| stands for

the determinant of H. The kernel function K is often taken to be a d-variable probability density

function satisfying
∫
Rd

K(x)dx = 1,
∫
Rd

xK(x)dx = 0,
∫
Rd

xxTK(x)dx = β2Id, Id is an identity matrix

and x = (x1, . . . , xd)
T is a generic vector.

We make some additional assumptions:

• H = Hn is a sequence of bandwidth matrices such that n−1|H|−1/2 and all entries of H approach

zero as n→∞.
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• D⊗rf(x) is the vector containing all partial derivatives of the order r of f at x, i.e. if f : Rd →
R⇒ D⊗rf(x) ∈ Rdr , D⊗1f(x) = Df(x).

• Every component of D⊗2f(x) is bounded, continuous and square integrable.

• V (g) =
∫
g(x)g(x)Tdx for any square integrable vector valued function g.

• vecH is d2 × 1 vector obtained by stacking from left to right columns of H.

The quality of the estimate can be expressed by means of the asymptotic mean integrated error

AMISE{f̂(·, H)} = n−1|H|−1/2V (K)︸ ︷︷ ︸
AIvar f

+
β22
4

vecHTV (D⊗2f)vecH︸ ︷︷ ︸
AIbias2 f

.

The last equation can be rewritten as

AMISE{f̂(·, H)} = n−1|H|−1/2V (K) +
β22
4

∫
tr2(HD2f(x))dx,

where trA is the trace of A and D2f(x) = Df(x)DT f(x).

Choice of optimal bandwidth

The optimal bandwidth matrix is defined as

HAMISE = arg min AMISE{f̂(·, H)}.

Unfortunately, it does not exist any explicit solution of the equation ∂AMISE(H)
∂vecH = 0. But the following

relation holds

(5) AIvar(HAMISE) =
4

d
AIbias2(HAMISE)

Remark. HAMISE = O(Jd n
−2/(d+4)), where Jd is d × d matrix of ones and AMISE(HAMISE) =

O(n−4/(d+4)) (see e.g. Chacón and Duong (2010)).

Consider an estimate Ib̂ias
2

in the form

Ib̂ias
2

=
1

n2

n∑
i,j=1

ΛH(Xi −Xj),

where

ΛH(z) = (KH ∗KH ∗KH ∗KH − 2KH ∗KH ∗KH +KH ∗KH)(z).

Now, instead of solving equation (5) we are dealing with equation

(6) n−1|H|−1/2V (K)d− 4n−2
n∑

i,j=1

ΛH(Xi −Xj) = 0.

Let us assume that the kernel K is standard normal density, i.e. K = ΦI (i.e. β2 = 1).

Let HIT stand for solution of the equation (6). If we proceed the similar way in univariate case, we

can show that the following theorem holds:

Theorem 2.

E(Ib̂ias
2
f̂) = Ibias2f̂ + n−1|H|−1/2ΛH(0) + o(||vecH||2)

var(Ib̂ias
2
f̂ (ν)) = 2n−2|H|−1/2V (Λ)V (f) + o(||vecH||2 + n−2|H|−1/2).
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Computations

The equation (6) can be rewritten as

|H|1/2 =
n2V (K)d

4
n∑

i,j=1
ΛH(Xi −Xj)

.

This is a nonlinear equation for d′ = 1
2d(d+ 1) unknown entries of H. We can adopt Scott’s idea and

assume

ĥij = σ̂ijn
−1/(d+4), i, j = 1, . . . , d⇒ ĥij =

σ̂ij
σ̂11

ĥ11, i = 2, . . . , d, j = 1, . . . , i,

then we obtain one nonlinear equation for ĥ11 which can be solved by means of a suitable method.

Simulation

We run a short simulation study to verify the quality of the proposed method. A performance

of the bandwidth matrix can be easily measured by the integrated square error (ISE)

ISE(H) =

∫
R2

[
f̂(x, H)− f(x)

]2
dx.

We drew samples of the size n = 100 from each density and selected bandwidth matrices for 100

random samples generated from each density.

Contour plot of training densities.

Density Formula

I N2([0, 0], [1, 4/5, 4/5, 1])

II 0.5 ·N2([−1, 1], [4/9, 12/45, 12/45, 4/9])

+0.5 ·N2([1,−1], [4/9, 12/45, 12/45, 4/9])

III 0.5 ·N2([0, 0], [1/5, 4/25, 4/25, 1/5])

+0.5 ·N2([1,−1], [1/5,−4/25,−4/25, 1/5])

Training densities.

AMISE-optimal bandwidth matrices:

vecHI = (0.2171, 0.1736, 0.1736, 0.2171)T ,

vecHII = (0.1219, 0.0736, 0.0736, 0.1219)T ,

vecHIII = (0.0490, 0, 0, 0.0490)T .
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The following table summarizes the average of the ISE, where the average was taken over sim-

ulated realizations.

Density ISE(HIT ) ISE(HAMISE)

I 0.0093 (0.0042) 0.0512 (0.0034)

II 0.0174 (0.0038) 0.0256 (0.0036)

III 0.0583 (0.0111) 0.0738 (0.0084)

ISE – The average with a standard deviation in parentheses.
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