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paramètres dans une perspective Bayésienne)

Cerquetti, Annalisa
Sapienza University of Rome, Department MeMoTEF
Via del Castro Laurenziano, 9
Rome (00161), Italy
E-mail: annalisa.cerquetti@gmail.com

1. Introduction

Gnedin (2010) introduces a two parameter family of exchangeable partition probability functions
(EPPF) belonging to the Gibbs class of genius α = −1 (Gnedin and Pitman, 2006), by suitably mixing
Poisson-Dirichlet (−1, ξ) models (Pitman and Yor, 1997; Fisher et al., 1943), for ξ = 1, 2, 3, . . . , over
ξ with

Pγ,ζ(Ξ = ξ) =
Γ(z1 + 1)Γ(z2 + 1)

Γ(γ)

∏ξ−1
i=1 (i2 − γi+ ζ)
ξ!(ξ − 1)!

,(1)

for some complex z1 and z2, for γ ≥ 0 and (i) either i2 − γi+ ζ (strictly) positive for all i ∈ N or (ii)
the quadratic is positive for i ∈ {1, . . . , i0−1} and has a root at i0. The resulting (γ, ζ) Gnedin-Fisher
species sampling model has EPPF of the Gibbs type p(n1, . . . , nk) = Vn,k

∏k
j=1(1 − α)nj−1 in the

specific form

pγ,ζ(n1, . . . , nk) =
(γ)n−k

∏k−1
i=1 (i2 − γi+ ζ)∏n−1

l=1 (l2 + γl + ζ)

k∏
j=1

nj !.(2)

The fundamental result in Gnedin and Pitman (2006, cfr. Th. 12) establishes that the EPPF of
each Gibbs partition of genius α ∈ (−∞, 1) corresponds to a mixture of extreme partition probability
functions, which differ for α ∈ (−∞, 0), α = 0 and α ∈ (0, 1). For ζ = 0 then γ ∈ (0, 1) (cfr. Gnedin,
2010 Sect. 6),(2) reduces to

pγ(n1, . . . , nk) =
(k − 1)!
(n− 1)!

(1− γ)k−1(γ)n−k
(1 + γ)n−1

k∏
j=1

nj !,(3)

and the law of the number of occupied blocks Kn is obtained by the general formula for Gibbs
partitions, P(Kn = k) = Vn,kS

−1,−α
n,k , for S−1,−α

n,k generalized Stirling numbers. For α = −1 those
reduce to Lah numbers S−1,1

n,k =
(
n−1
k−1

)
n!
k! hence

Pγ(Kn = k) =
(
n

k

)
(1− γ)k−1(γ)n−k

(1 + γ)n−1
.(4)

As from Gnedin (2010, cfr. eq. (9) and (10)), the mixing law yielding the one-parameter model (3)
arises from (4) for n→∞ by the standard asymptotics Γ(n+α)/Γ(n+ b) ∼ na−b and corresponds to

Pγ(Ξ = ξ) =
γ(1− γ)ξ−1

ξ!
,(5)

for ξ = 1, 2, . . . , and γ ∈ (0, 1), while, thinking of (5) as a prior, a posterior distribution, for 1 ≤ k ≤ n,
for Ξ results

Pγ(Ξ = ξ|Kn = k) =
(n− 1)!
(k − 1)!

Γ(γ + n)
Γ(γ + n− k)

(k − γ)ξΓ(k + ξ)
Γ(ξ + 1)Γ(k + ξ + n)

.(6)
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2. Main results

Gnedin (2010, cfr. Sect. 2) points out that the Gibbs weights in (2) can be split in linear factors by
factoring the quadratics as

x2 + γx+ ζ = (x+ z1)(x+ z2), and x2 − γx+ ζ = (x+ s1)(x+ s2),

thus providing the alternative five parameters representation

V γ,ζ
n,k =

(γ)n−k(s1 + 1)k−1(s2 + 1)k−1

(z1 + 1)n−1(z2 + 1)n−1
(7)

for some complex z1, z2, s1, s2, such that z1 + z2 = γ, z1z2 = ζ, s1 + s2 = −γ, s1s2 = ζ. In the next
theorem we show those constraints limit admissible values for the four parameters s1, s2, z1 and z2
yielding an interesting alternative two parameters representation of the model.

Theorem 1. For ψ ∈ C with Re(ψ) = γ/2, for 0 < γ < 2, and γ − ψ its complex conjugate,
the EPPF of the two-parameter (γ, ζ)-Gnedin-Fisher species sampling model (2) admits the following
alternative representation

pγ,ψ(n1, . . . , nk) =
(γ)n−k(1− ψ)k−1(1− γ + ψ)k−1

(1 + ψ)n−1(1 + γ − ψ)n−1

k∏
j=1

nj !.(8)

For ψ ∈ (−1, 1) then 0 < γ < ψ + 1 and the model has real parameters. For ψ = 0, then γ ∈ (0, 1)
and (8) yields the one-parameter model (3).

Proof: For z1 + z2 = γ, z1z2 = ζ, s1 + s2 = −γ and s1s2 = ζ vectors (z1, z2) and (s1, s2) must
be the roots (complex or real) of the following quadratic polynomials

z2
1 − γz1 + ζ = 0 and z2

2 − γz2 + ζ = 0, s21 + γs1 + ζ = 0 and s22 + γs2 + ζ = 0.

For γ2 − 4ζ > 0 admissible real solutions are

z1 =
γ ±

√
γ2 − 4ζ
2

and z2 =
γ ±

√
γ2 − 4ζ
2

, s1 =
−γ ±

√
γ2 − 4ζ

2
and s2 =

−γ ±
√
γ2 − 4ζ

2
.

For γ2 − 4ζ < 0 admissible complex solutions are

z1 =
γ ± i

√
4ζ − γ2

2
and z2 =

γ ± i
√

4ζ − γ2

2
, s1 =

−γ ± i
√

4ζ − γ2

2
and s2 =

−γ ± i
√

4ζ − γ2

2
.

Now let indifferently A = i
√

4ζ − γ2/2 or A =
√
γ2 − 4ζ/2. Then, regardless of the solutions being

real or complex, possible vectors satisfying the constraints z1 + z2 = γ, s1 + s2 = −γ, z1z2 = ζ and
s1s2 = ζ must be as follows

(z1, z2) =
(γ

2
+A,

γ

2
−A

)
or
(γ

2
−A, γ

2
+A

)
and

(s1, s2) =
(
−γ

2
+A,−γ

2
−A

)
or
(
−γ

2
−A,−γ

2
+A

)
,

which shows admissible solutions reduce to z1 = −s1 and z2 = −s2 or z1 = −s2 and z2 = −s1. Since
(7) is invariant to permutations of (z1, z2) and (s1, s2), the five parameters in (7) reduce to ψ and γ for
z1 = ψ and z2 = γ − ψ, and s1 = −ψ, s2 = ψ − γ thus yielding (8). For ψ ∈ C then the existence and
the positiveness of the complex Gamma function implies Re(1− ψ) > 0 hence 0 < γ < 2. For ψ ∈ R
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then positiveness of the numerator in (8) implies 1− ψ > 0 and 1− γ + ψ > 0. For ψ = 0, 0 < γ < 1
and (8) reduces to (3) by standard combinatorial calculus. �

Remark 2. Rewriting the prior (5) and the posterior (6) of the one parameter model as

Pγ(Ξ = ξ) =
(1)ξ−1

Γ(ξ)
(1− γ)ξ−1(γ)1

(1)ξ
and Pγ(Ξ = ξ|Kn = k) =

(k)ξ−1

Γ(ξ)
(k − γ)ξ−1(n+ γ − k)k

(n)k+ξ−1
,

for ξ = 1, 2, . . ., one may notice both belong to the class of shifted univariate generalized Waring
distributions, (also known as inverse Markov-Polya), a family of distributions on N ∪ 0 (Irwin, 1975;
Xekalaki, 1983), with probability mass function

P(N = i) =
(ρ)η
i!

(a)i(η)i
(a+ ρ)η+i

,(9)

for i = 0, 1, 2, . . . , and a, η, ρ positive reals, which arise as Beta(ρ, a) mixtures of a Negative Bino-
mial (η, p) distributions. It is easy to verify that the prior and the posterior arise respectively as
Beta(γ, 1−γ) mixtures of NB(1, p) and as Beta(n+γ−k, k−γ) mixtures of NB(k, p). The following
result identifies the mixing distribution yielding the reparametrized (γ, ψ) Gnedin-Fisher model with
the shifted Type II Gaussian hypergeometric distribution (δ, α, β, λ) (cfr. Rodriguez et al. 2007, cfr.
Table 1), a family of discrete distributions generalizing Waring distributions to complex parameters.

Theorem 3. The EPPF in (8) arises by mixing the family of PD(−1, ξ) partition models

pξ,−1(n1, . . . , nk) =
(ξ − 1)k−1↑−1

(ξ + 1)n−1

k∏
j=1

nj !,(10)

over ξ with

Pγ,ψ(Ξ = ξ) =
(1− ψ)ξ−1(1− γ + ψ)ξ−1(γ)1−ψ

Γ(ξ)(1 + ψ)ξ−ψ
,(11)

a shifted Type II Gaussian hypergeometric distribution with parameters λ = 1, δ = 2, α = ψ and
β = γ − ψ. For ψ ∈ (−1, 1) then γ ∈ (0, ψ + 1) and the mixing law reduces to a shifted generalized
Waring distribution with real parameters a = 1− γ + ψ, η = 1− ψ and ρ = γ.

Proof:

pξ,−1(n1, . . . , nk) =
∑
ξ≥k

(ξ − 1)!
(ξ − k)!(ξ + 1)n−1

(1− ψ)ξ−1(1− γ + ψ)ξ−1(γ)1−ψ
Γ(ξ)(1 + ψ)ξ−ψ

which can be rewritten as

= (γ)1−ψ
∞∑
y=0

Γ(y + k + 1)(1− ψ)y+k−1(1− γ + ψ)1−ψ
y!Γ(y + k + n)(1 + ψ)y+k−ψ

=

then as

= (γ)1−ψ
∞∑
y=0

Γ(k − ψ + y)Γ(1 + ψ)Γ(k − γ + ψ + y)
y!Γ(y + k + n)Γ(1− ψ)Γ(1− γ + ψ)

,

and by some manipulations we obtain

=
(γ)1−ψΓ(1 + ψ)Γ(k − ψ)Γ(k − γ + ψ)Γ(γ + n− k)

Γ(1− ψ)Γ(1− γ + ψ)Γ(n+ γ − ψ)Γ(n+ ψ)

∞∑
y=0

(k − ψ)y(k − γ + ψ)y(n+ γ − k)k−ψ
y!(n+ ψ)k−ψ+y

.
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In the sum on the right we recognize (9) for parameters a = k−γ+ψ, η = k−ψ and ρ = n+γ−k and this
completes the proof. �

By exploiting the mixture representation introduced in Theorem 3. we are able to obtain the structural
distribution, i.e. the law of the frequency of the first block observed,

P̃1 := lim
n→∞

#(B1 ∩ [n])
n

.

Proposition 4. The frequency P̃1 of block B1 of the (γ, ψ) Gnedin-Fisher model has distribution

Pγ,ψ(P̃1 ∈ dy) = (γ)1−ψΓ(1 + ψ) [δ1(dy) + (1− γ + ψ)(1− ψ)y2F1(2− ψ, 2− γ + ψ, 2; 1− y)] dy

for 2F1(a, b, c;x) the Gauss hypergeometric function.

Proof: By the mixture representation of Theorem 3.

Pγ,ψ(P̃1 ∈ dy) =
∞∑
ξ=1

Pγ,ψ(Ξ = ξ)P(P̃ξ,1 ∈ dy).

By the theory of the symmetric Dirichlet model, it is known that P̃ξ,i
d= Beta(2, ξ− i), therefore, since

Be(2, 0) = δ1(dy),

Pγ,ψ(P̃1 ∈ dy) = (γ)1−ψΓ(1 + ψ)δ1(dy) +
∞∑
ξ=2

(1− ψ)ξ−1(1− γ + ψ)ξ−1(γ)1−ψ
Γ(ξ)(1 + ψ)ξ−ψ

Γ(ξ + 1)
Γ(ξ − 1)

y(1− y)ξ−2.

By the change of variable ξ − 2 = z

Pγ,ψ(P̃1 ∈ dy) = (γ)1−ψΓ(1 + ψ)δ1(dy) +
∞∑
z=0

(1− ψ)z+1(1− γ + ψ)z+1(γ)1−ψΓ(z + 3)
Γ(z + 1)Γ(z + 2)(1 + ψ)z+2−ψ

y(1− y)z =

and by standard combinatorial calculus

= (γ)1−ψΓ(1 + ψ)

[
δ1(dy) + (1− ψ)(1− γ + ψ)

∞∑
z=0

(2− ψ)z(2− γ + ψ)z
Γ(z + 1)Γ(z + 2)

y(1− y)z
]
,

and the result follows. �

The structural distribution may be useful to compute expected values of symmetric statistics of the
frequencies of the kind

∑k
j=1 f(P̃j). It is an easy task for example to derive the following result

E

 k∑
j=1

P̃nj

 = E(P̃n−1
1 ) =

n!(γ)n−1

(1 + ψ)n−1(1 + γ − ψ)n−1
.

3. Distributional results in a Bayesian perspective

In Lijoi et al. (2007, 2008) a Bayesian nonparametric treatment of species sampling problems has
been proposed by means of conditional analysis of exchangeable Gibbs partitions. In this setting
one assumes that sampling from an unknown population of an unknown number of different species
provides an observation from an exchangeable partition model by the multiplicities of different species
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observed in the first n observations. Interest usually lies in making inference on species richness, the
number of different species in the population. In a Bayesian perspective this sums up to calculate a
posterior distribution on the number of new species observed in an additional sample, conditional on
having k different species in a basic sample already observed. Here we derive the posterior distribution
for the Gnedin-Fisher two-parameter model relying on the alternative parametrization. The following
result extends the one in Gnedin (2010, Eq. 10) for the one-parameter model and shows that (12)
is still in the class of shifted Type II Gaussian hypergeometric distributions, for updated parameters
a = k − γ + ψ, η = k − ψ and ρ = n+ γ − k, for γ < k < n+ γ.

Proposition 5. The posterior distribution for Ξ for the reparametrized (γ, ψ) Gnedin-Fisher model
is given by

Pψ,γ(Ξ = ξ|Kn = k) =
(k − ψ)ξ−1(k − γ + ψ)ξ−1(n+ γ − k)k−ψ

Γ(ξ)(n+ ψ)k−ψ+ξ−1
.(12)

Proof: By the general form, for Gibbs models, of the posterior of the number of new species arising
in a new sample of dimension m (cfr. Lijoi et al. 2007, eq. (4)), expressed in terms of non-central
generalized Stirling numbers, we know that

P(K∗m = k∗|Kn = k) =
Vn+m,k+k∗

Vn,k
S
−1,−α,−(n−αk)
m,k∗ .(13)

Inserting the specific weights in (8), and exploiting the definition of non-central Lah numbers S−1,1,r
n,k =

n!
k!

(
n−r−1
n−k

)
, (13) yields

Pγ,ψ(Km = k∗|Kn = k) =
(
m

k∗

)
(γ + n− k)m−k∗(n+ k + k∗)m−k∗

(k − ψ)k∗(k − γ + ψ)k∗
(n+ ψ)m(n+ γ − ψ)m

.(14)

For m→∞, by standard Stirling approximations, (12) arises.

Remark 6. Distribution (14) belongs to a family of discrete distributions arising by the following
summation result for the 3F2(1) generalized hypergeometric functions

3F2(1) =
n∑
k=0

(−n)k
k!

(a)k(b)k
(d)k(1 + a+ b− d− n)k

=
(d− a)n(d− b)n
(d)n(d− a− b)n

,

yielding after some manipulations

n∑
k=0

(
n

k

)
(−1)k(a)k(b)k(d− a− b)n−k(1− n− d)n−k

(d− b)n(1− n− d+ a)n
= 1.

(14) arises for a = k− ψ, b = k− γ + ψ, d = n+ k and corresponds to Type IV models in Table 1. of
Rodŕıguez-Avi et al. (2008).

We conclude deriving a Bayesian estimator for the probability of discovering a new species at the
(n + m + 1)th draw, given the basic sample (n1, . . . , nk), under the two-parameter Gnedin-Fisher
model by an application of Eq. (6) in Lijoi et al. (2007)

D̃n,k
m =

m∑
k=0

(γ + n− k)m−k∗(k − ψ)k∗+1(k − γ + ψ)k∗+1

(ψ + n)m+1(n+ γ − ψ)m+1

(
m

k∗

)
m+ n+ k − 1!
n+ k + k∗ − 1!

which corresponds to

D̃n,k
m =

1
(ψ + n+m)(n+ γ − ψ +m)

E[(K∗ + k − ψ)(K∗ + k − γ + ψ)]
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where K∗ has distribution (14).

Additionally a posterior distribution for the total number Sm of new observations belonging to new
species is obtained according to eq. (11) in Lijoi et al. (2008) as follows

Pγ,ψ(Sm = s|Kn = k) =
(
m

s

)
(n+ k)m−s

(n+ ψ)m(n+ γ − ψ)m

s∑
k∗=1

(
s

k∗

)
s− 1!
k∗ − 1!

(γ+n−k)m−k∗(k−ψ)k∗(k−γ+ψ)k∗

and the corresponding Bayesian estimator under quadratic loss function is given by

E(Sm|Kn = k) = m
(k − ψ)(k − γ + ψ)
(n+ γ)(n+ γ − ψ)

.
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ABSTRACT (RÉSUMÉ)

In modern Bayesian statistics exchangeable Gibbs partitions (Gnedin and Pitman, 2006), are
playing a central role both in the construction and properties of almost surely discrete nonparametric
priors and in the nonparametric treatment of species sampling problems. Here, by means of an alter-
native parametrization of the two-parameter Gnedin-Fisher species sampling model (Gnedin, 2010), a
family of Gibbs partitions arising by mixtures of Fisher’s models, we obtain additional results for the
partition model itself and a posterior analysis in a Bayesian nonparametric perspective. In particular,
identifying the prior mixing distribution on the number of blocks with the shifted generalized Waring
distribution (a family of probability laws arising by Beta mixtures of Negative Binomial distributions),
we provide a direct construction of the exchangeable partition probability function, obtain the coniugate
posterior mixing, and derive the structural distribution and its moments. On the Bayesian side, in
the spirit of Lijoi et al. (2008), we provide distributional results for an additional sample, conditional
on a basic observed sample, for quantities of statistical interest in species sampling problems.
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