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1. Introduction

Weighting by propensity scores is a widely used adjustment procedure to deal with unit non-

response in surveys. In this procedure, weights are defined in terms of the probability that the

respondent would respond to the survey if sampled. This procedure can be motivated in a two–phase

sampling framework given by the sampling design and the mechanism generating the responses (Oh

and Scheuren 1983). Under this framework, if the response probabilities could be estimated without

error, then the resulting Horvitz–Thompson estimator would be unbiased estimator for the corre-

sponding finite population parameter. Hence, if the estimated response probabilities were reasonable

approximations to the respective true probabilities, the propensity score adjusted estimator is expected

to present “small” nonresponse bias.

The estimation of these response probabilities is usually implemented by fitting parametric

regression models for binary variables (see, e.g., Laaksonen 2006). Although parametric response

modeling has many advantages, the resulting adjusted estimators can be seriously biased under mis-

specification of the underlying models. An alternative is to estimate those probabilities by nonpara-

metric regression. Giommi (1984) introduced this idea with the use of kernel smoothing. A detailed

account of the statistical properties for the corresponding adjusted estimator by this approach is given

in Da Silva and Opsomer (2006). Da Silva and Opsomer (2009) investigated the same properties by

considering an extension to Giommi’s estimator, based on the estimation of the probabilities of re-

sponse with local polynomial regression. In both cases, the adjusted estimator by these two methods

is unbiased (for large samples) and consistent under the two-phase framework of Oh and Scheuren

(1983) without having to assume the form of the regression curve is known.

One possibly restrictive limitation for many sampling surveys to directly implement these non-

parametric procedures for nonresponse is their requirement to depend on only one continuous auxil-

iary variable. In this article, we discuss a semiparametric kernel–based method to estimate response

propensities that still require at least one auxiliary variable to be continuous. However, the method

allows categorical variables that affect nonresponse to be taken into account.

2. The proposed method

Consider a population of elements denoted by U = {1, 2, ..., N} with N finite. Let yi denote

the value of a study variable y and xi = (zTi , t
T
i )T a k × 1 vector of values of k auxiliary variables

for the i–th element in U , where zi is k1 × 1 and ti is (k − k1) × 1. Let also yU = (y1, y2, ..., yN )T

and the XU = [x1,x2, ...,xN ]T . Suppose we are interested in the estimation of the population

mean of ȳU = N−1
∑N

i=1 yi using the information in a sample s of size n selected from U . Let
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IU = (I1, I2, ..., IN )T , where Ii is an indicator variable that element i is included in the sample s.

Suppose s is chosen by a probability sampling design p(·) with the property

Pr(IU = iU |XU ,yU ) = Pr(IU = iU |XU ),

for all possible realizations iU of IU and all possible values of XU and yU . The first order inclusion

probabilities are denoted πi = Pr(Ii = 1 |XU ) and in the event the information to be collected in the

elements of s can be fully observed, we could estimate ȳU with, for instance, the Hájek estimator

ȳH =

∑
i∈s π

−1
i yi∑

i∈s π
−1
i

.(1)

Now suppose that there is nonresponse and yi and only observed for r = {i ∈ s : Ri = 1}, where

Ri is an indicator variable that element i ∈ U responds to the survey. In this case, naive adjustments

that apply the base sampling weights to the respondents result in biased estimators for ȳU when y is

correlated with nonresponse. To attempt to reduce this bias, define the propensity scores as

φi = Pr{Ri = 1 |XU}, i = 1, 2, ..., N.

The adjustment by the propensity scores requires the estimation of the response probabilities φi for

all respondents. The estimated probabilities, denoted by {φ̂i : i ∈ r}, yield the adjusted estimator

ȳ
H,φ̂

=

∑
i∈r π

−1
i φ̂−1i yi∑

i∈r π
−1
i φ̂−1i

,(2)

which is nearly unbiased when the response propensities are estimated without error (φ̂i = φi).

A successful application of the propensity score procedure depends on how well the response

propensities can be estimated. This task is intrinsically related to one’s ability in postulating a sensible

working model for the true propensity scores. The model of interest in this article assumes that

(R.1) For all possible realizations rU = (r1, r2, ..., rN )T of RU = (R1, R2, ..., RN )T and all yU and XU ,

Pr{RU = rU |yU ,XU} =

N∏
i=1

Pr{Ri = ri |XU};

(R.2) For a given known and monotone link function g(·),

φi ≡ Pr{Ri = 1 |XU} = g−1
(
zTi β + γ

(
ti
))
, for all i ∈ U and all XU ,

where β is a p× 1 vector of parameters and γ : Rk−k1 → R is an unknown smooth function.

Condition (R.1) assumes the nonresponse process follows a missing–at–random response mechanism,

as the φi do not depend on the study variable given the values of the auxiliary variables are fixed.

This condition assumes also the response indicators are conditionally independent given the auxiliary

variables. Condition (R.2) postulates a model for the response propensities that is a special case of the

semiparametric regression model proposed by Severini and Staniswalis (1994). Categorical variables

are modeled through the term βTz and continuous auxiliary variables with possibly nonlinear effects

on the φi are modeled nonparametrically through the function γ(·), which allows also taking into

account curvature in the link scale even if the link function is incorrectly specified.

The estimation of the response propensities defined in (R.2) requires estimating the vector of

parameters β and the function γ(·). If a census could have been undertaken over the population U ,

estimates β̂ and γ̂(·) could be obtained by working with the population–based log–likelihood function

` ≡ ln Pr{R1 = r1, ..., RN = rN |XU} =

N∑
i=1

[
ri lnφi + (1− ri) ln (1− φi)

]
,
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where φi = g−1
(
zTi β + γ

(
ti
))

. However, in our present context, the only components of RU that are

observed are {Ri : i ∈ s}. Hence, we suggest estimating β and γ(·) as the β̂ and γ̂(·) that maximize

the design–weighted log-likelihood

̂̀≡∑
i∈s

π−1i
{
ri ln

[
g−1
(
zTi β + γ

(
ti
))]

+ (1− ri) ln
[
1− g−1

(
zTi β + γ

(
ti
))]}

,(3)

which is a design–unbiased estimator of `. The maximizers of (3) can be obtained by applying firstly

local likelihood estimation to estimate the γ term, for fixed β, and then estimating β using the gamma

estimated previously. This requires a two–step computing algorithm, such as the one proposed by

Severini and Staniswalis (1994), that needs to be iterated until some convergence criteria is met. An

adaptation of this algorithm to our setting is as follows:

Step 1: For each t and β fixed, obtain the estimate γ̂β ≡ γ̂β(t) as the value γβ that solves the equation

∂

∂γβ

{∑
i∈s

π−1i W

(
ti − t
b

){
ri ln

[
g−1
(
zTi β + γβ

)]
+ (1− ri) ln

[
1− g−1

(
zTi β + γβ

)]}}
=

∑
i∈s

π−1i W

(
ti − t
b

)[
ri − g−1

(
zTi β + γβ

)]
= 0,

where W (·) is a kernel function on Rk−k1 and b is its bandwidth parameter. Also, obtain the estimate

γ̂ ′ ≡ (∂/∂β)γ̂(t) as the vector γ ′β which is the solution of the system

∂

∂γβ

{∑
i∈s

π−1i W

(
ti − t
b

)[
ri − g−1

(
zTi β + γ̂β

)]}}
=

∑
i∈s

π−1i W

(
ti − t
b

)
g−1
(
zTi β + γ̂β

)[
1− g−1

(
zTi β + γ̂β

)](
zi + γ̂ ′

)}
= 0.

Step 2: Given the values γ̂β ≡ γ̂β(t) and γ̂ ′ ≡ (∂/∂β)γ̂(t) obtained in Step 1, compute the estimate

β̂ as the value for the vector β that solves the system

∂

∂β

{∑
i∈s

π−1i
{
ri ln

[
g−1
(
zTi β + γ̂β

)]
+ (1− ri) ln

[
1− g−1

(
zTi β + γ̂β

)]}}
=

∑
i∈s

π−1i
[
ri − g−1

(
zTi β + γ̂β

)](
zi + γ̂ ′

)
= 0.

Steps 1 and 2 are repeated until convergence and, after this, the final estimate of γ(·) is taken to be

γ̂
β̂
(·).

3. Simulation study

We now demonstrate statistical properties of the semiparametric adjustment described in Section

2 and compare this with the adjustment obtained by fitting a logistic regression model to the response

propensities. It is of particular interest to address how well the the semiparametric adjustment is

capable of correcting for misspecification of the linear predictor used in the estimation of the propensity

scores. We considered a population of N = 4,000 elements and the following variables

X1 ∼ Bernouilli(1/2), X2 = 1 + I
(
U ≤ 1/2

)
[where U ∼ U(0, 1)], T ∼ U(0, 1),

Y1 ∼ N(100 + 6X1 + 10X2, 16), Y2 ∼ N(200 + 100T, 25),

Y3 ∼ N(400 + 20X1 − 25X2 + 100T, 81) and Y4 = 100I(Y3 ≤ Median(Y3))
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were generated for each element by i.i.d. sampling. Keeping those fixed, B = 5,000 simple random

samples (without replacement) were taken from the population. For each sample, one population

response indicator vector was generated under three response mechanisms (I, II and III) by i.i.d.

sampling from Bernouilli distribution. The response propensity functions of these mechanisms are

φI ≡ Pr(R = 1 |X1 = x1, X2 = x2, T = t) = logit−1(β1x1 + β2x2 + β0 + β3t)

φII ≡ Pr(R = 1 |X1 = x1, X2 = x2, T = t) = logit−1(β1x1 + β2x2 + γ(t)), where

γ(t) = β4 + β5(t− 0.2) + β6
[
1 + (t− 0.2)2/0.05

]−1
φIII ≡ Pr(R = 1 |X1 = x1, X2 = x2, T = t) = 1− exp

[
− exp

(
β1x1 + β2x2 + γ(t)

)]
.

Response mechanisms I and II use the logit link function and have the same linear effect of X1 and of

X2 in the link scale. However, mechanism II contains a nonlinear effect of T in contrast to mechanism

I which has a linear effect of that variable. Mechanism III differs from II only by the change of the

logit by the complementary log–log link. The constants β0,..., β6 are such that φI , φII and φIII yield

on average 20%, 45% and 35% nonresponse rates. For each set of respondents of a sample, the four

methods were applied to adjust the Hájek estimator (2):

• True propensities: adjustment defined by applying the true response propensity scores (φ̂ = φ).

• Semiparametric: φ̂ is obtained using the semiparametric algorithm described in Section 2, with

a fixed bandwidth parameter b = 0.35.

• Logistic: logistic regression with linear predictor that considers linear effects of x and t.

• Respondent mean: The naive adjustment by considering φ̂ = c, where c is a constant in (0, 1].

Table 1: Monte Carlo properties of adjusted estimators for the population mean of

four variables based on 5,000 SRS of size 400 from the population of 4,000 elements

and 5,000 response indicators under mechanism I

Variable Method Mean Bias Variance MSE RB (%) RMSE

Y1 True propensities 118.1 -0.0 0.84 0.84 2.6 1.00

Semiparametric 118.1 -0.0 0.81 0.81 2.6 0.95

Logistic 118.1 -0.0 0.82 0.82 2.8 0.97

Respondent mean 118.8 0.6 0.80 1.16 67.6 1.37

Y2 True propensities 249.9 -0.0 4.63 4.63 1.2 1.00

Semiparametric 250.8 0.8 3.85 4.56 42.9 0.98

Logistic 249.9 -0.0 3.86 3.86 2.3 0.83

Respondent mean 254.1 4.1 4.10 21.16 203.9 4.57

Y3 True propensities 423.1 -0.1 23.16 23.16 1.6 1.00

Semiparametric 424.0 0.9 21.95 22.69 18.4 0.98

Logistic 423.1 -0.1 22.30 22.31 2.1 0.96

Respondent mean 427.2 4.1 21.43 38.02 88.0 1.64

Y4 True propensities 50.0 0.0 7.64 7.64 1.4 1.00

Semiparametric 49.6 -0.4 7.36 7.52 14.6 0.98

Logistic 50.1 0.1 7.45 7.46 1.9 0.98

Respondent mean 48.0 -2.0 7.18 11.12 74.2 1.46

The Monte Carlo results for the estimation of the population mean of Y1, Y2, Y3 and Y4 are given in

Tables 1–3. In what follows, the relative bias (RB) is defined as the ratio between the absolute bias
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and the standard deviation. The relative mean square error (RMSE) is the MSE of the estimator

divided by the MSE of the adjusted estimator by the true propensity scores.

Table 2: Monte Carlo properties of adjusted estimators for the population mean of

four variables based on 5,000 SRS of size 400 from the population of 4,000 elements

and 5,000 response indicators under mechanism II

Variable Method Mean Bias Variance MSE RB (%) RMSE

Y1 True propensities 118.2 0.0 2.93 2.93 1.0 1.00

Semiparametric 118.2 0.0 2.09 2.09 1.8 0.71

Logistic 118.3 0.1 2.97 2.98 6.7 1.02

Respondent mean 119.1 1.0 1.24 2.17 86.7 0.74

Y2 True propensities 250.1 0.2 16.18 16.22 4.7 1.00

Semiparametric 251.5 1.6 8.80 11.33 53.7 0.70

Logistic 247.1 -2.8 13.93 21.92 75.7 1.35

Respondent mean 264.4 14.5 5.24 214.48 631.7 13.23

Y3 True propensities 423.3 0.1 71.93 71.95 1.5 1.00

Semiparametric 424.1 1.0 52.97 53.90 13.2 0.75

Logistic 419.2 -4.0 74.18 89.85 46.0 1.25

Respondent mean 437.6 14.4 30.47 238.89 261.5 3.32

Y4 True propensities 49.9 -0.1 25.90 25.90 1.6 1.00

Semiparametric 49.3 -0.7 16.83 17.30 16.8 0.67

Logistic 51.6 1.6 22.23 24.87 34.4 0.96

Respondent mean 42.8 -7.2 10.19 61.42 224.2 2.37

Table 3: Monte Carlo properties of adjusted estimators for the population mean of

four variables based on 5,000 SRS of size 400 from the population of 4,000 elements

and 5,000 response indicators under mechanism III

Variable Method Mean Bias Variance MSE RB (%) RMSE

Y1 True propensities 118.2 0.0 2.55 2.55 1.6 1.00

Semiparametric 118.0 -0.1 2.14 2.16 9.4 0.85

Logistic 118.0 -0.1 5.65 5.67 5.3 2.22

Respondent mean 119.0 0.8 0.99 1.62 79.6 0.63

Y2 True propensities 250.1 0.1 15.15 15.16 3.4 1.00

Semiparametric 250.6 0.6 10.02 10.40 19.5 0.69

Logistic 240.7 -9.3 26.63 112.34 179.4 7.41

Respondent mean 264.0 14.0 4.47 201.38 663.9 13.28

Y3 True propensities 423.4 0.2 66.01 66.06 2.7 1.00

Semiparametric 423.2 0.0 55.00 55.00 0.2 0.83

Logistic 412.2 -11.0 135.33 255.91 94.4 3.87

Respondent mean 437.3 14.2 25.46 226.32 280.9 3.43

Y4 True propensities 49.9 -0.1 22.60 22.62 2.9 1.00

Semiparametric 49.7 -0.3 16.33 16.40 6.3 0.72

Logistic 54.9 4.9 39.61 63.26 77.3 2.80

Respondent mean 43.0 -7.0 8.43 56.97 239.9 2.52
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4. Discussion

In this article, we considered an adjustment procedure for unit nonresponse by a propensity

score weighting method that uses the semiparametric regression model proposed by Severini and

Staniswalis (1994). This model allows the estimation of response propensities by taking into account

categorical and continuous auxiliary variables. Properties of this method were investigated in a Monte

Carlo study which considered also the respondent mean and the adjusted estimators with the true

propensity scores and with a logistic regression fit.

• Under the correct model for the logistic adjustment (Response mechanism I), this method out-

performs the semiparametric method in terms of bias reduction and efficiency as well. However,

the performances of the semiparametric method are not much worse.

• For response mechanisms II and III, the model underlying the logistic method is incorrect. In

these cases, the semiparametric method has better performances than the logistic method. The

former method yield smaller biases and smaller mean square errors. The superior performance

of the semiparametric method under mechanism III demonstrates its potential to adjust for

nonresponse under misspecification of the link function.

• The adjustment by true propensities is unbiased for all scenarios, as expected. However, this

method is not as efficient as the semiparametric and not as the logistic, when the underlying

response mechanism for this was correctly specified. On all scenarios, the respondent mean is

highly biased illustrating the danger of not adjusting for the nonresponse.

These results indicate the semiparametric method adopted in this article can be a valuable

addition to the class of propensity weighting adjustment methods. However, further investigations are

needed to make the method more useful in practice. One issue is how to select properly the bandwidth

parameter. Moreover, the implementation and the performances of the method should be investigated

in the presence of interactions between the categorical and the continuous auxiliary variables.
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