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1. Introduction

Scale mixtures of normal distribution are often used as a challenging family for statistical pro-

cedures of symmetrical data, providing a group of thick-tailed distributions that are often used for

robust inference of symmetrical data. Moreover, this class include distributions such as the Student-t,

the slash, the contaminated normal, among others. However, the theory and application (through sim-

ulation or experimentation) often generate a great amount of data sets that are skewed and present

heavy-tail as, for instance, data set on family income. Thus, appropriate distributions to fit and

simulate these skewed and heavy tailed data are needed.

Ferreira et al. (2011) propose a new family of distributions that combine skewness with heavy

tails, using the scale mixtures of normal distributions and the normal kernel, named SSMN. Moreover,

this distribution is attractive because it simultaneously models the skewness with heavy tails and it

has a stochastic representation that allows easy implementation of the EM-algorithm. This extension

result in a flexible class of models for robust univariate models once it contains as especial cases,

the skew-normal (Azzalini and Dalla-Valle, 1996) distribution and all the symmetric class of SMN

distributions defined by Andrews and Mallows (1974). All these distributions have heavier tails than

the skew-normal one, and thus can be used for robust inference in many type of models. The main

virtue of the members of this family of distributions is that they are easy to simulate from and

they also supply genuine EM algorithms for maximum likelihood estimation. For univariate skewed

responses, the EM-type algorithm has been discussed with emphasis on the skew-t, skew-slash, skew-

contaminated normal and skew-exponential power distributions.

In this paper, we extend the EM algorithm for linear regression models (SSMN-RM) and we

developed some methods to obtain diagnostic measures on SSMN models. However, as the observed

data likelihood of the SSMN-RM involves an intractable integral, it is very difficult directly to apply

Cook’s (1986) approach to obtain local influence measures. In this paper we apply Zhu and Lee’s

(2001) local influence approach to the SSMN-RM leading to closed form expression of local influence

measures.
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2. Skew-normal distributions

A simpler departure which defines the univariate skew-normal distribution has been proposed

by Azzalini (1985), defining the following probability density function (pdf)

(1) f(y) = 2ϕ(y|µ, σ2)Φ1

(
λ(y − µ)

σ

)
, y ∈ R.

where ϕ(.|µ, σ2) stands for the pdf of the normal distribution with mean µ and variance σ2, Φ1(.)

represents the cumulative distribution function (cdf) of the standard normal distribution. When

λ = 0, the skew normal distribution reduces to the normal distribution (y ∼ N(µ, σ2)). A random

variable y with pdf as in (1), will be denoted by SN(µ, σ2, λ). Its marginal stochastic representation,

which can be used to derive several of its properties, is given by

(2) y
d
= µ+ σ(δ|T0|+ (1− δ2)1/2T1), with δ =

λ√
1 + λ2

,

where |T0| denotes the absolute value of T0, T0 ∼ N1(0, 1) and T1 ∼ N(0, 1) are independent, and

“
d
= ” means “distributed as”. From (2) it follows that the expectation and variance of y are given,

respectively, by

(3) E[Y ] = µ+

√
2

π
σδ, V ar[Y ] = σ2(1− 2

π
δ2).

3. A skew version of scale mixtures of normal distribution

Lange and Sinsheimer (1993) provide a group of thick-tailed symmetric distributions which has

the normal distribution as particular case.

Definition 1. A random variable Y follows a scale mixtures of normal distribution with location

parameter µ ∈ R and a positive scale parameter σ2 if its density function assumes the form

(4) f(y) =

∫ ∞

0
ϕ(y|µ, κ(u)σ2)dH(u; τ ),

where H(.; τ ) is the cdf of a positive random variable U indexed by the parameter vector τ and κ(.)

is a strictly positive function. For a random variable with a pdf as in (4), we shall use the notation

Y ∼ SMN(µ, σ2, H;κ). Moreover, when µ = 0 and σ2 = 1, we denote Y ∼ SMN(H;κ).

A asymmetric version of SMN distributions has been introduced by Ferreira et al. (2011) as a

challenging family for statistical procedures of asymmetric data. This new family of distributions con-

tains all the distributions studied by Lange and Sinsheimer (1993), the so called normal/independent

(NI) distribution, but with an extra parameter that regulates the skewness.

Definition 2. A random variable Y follows an skew scale mixtures of normal distribution (SSMN)

with location parameter µ ∈ R, scale factor σ2 and skewness parameter λ ∈ R, if its pdf is given by

(5) f(y) = 2

∫ +∞

0
ϕ(y|µ, σ2κ(u))Φ1(λ(y − µ)/σ)dH(u, τ ),

where U is a positive random variable with cdf H(u; τ ). For a random vector with pdf as in (5), we

use the notion y ∼ SSMN(µ, σ2, λ,H;κ). If µ = 0 and σ2 = 1 we refer to it as a standard SSMN

distribution and we denote it by SSMN(λ,H;κ). If λ = 0, we have the SMN distribution.
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Examples of SSMN distributions

• The Skew Student-t normal distribution, with ν > 0 degrees of freedom, Y ∼ StN(µ, σ2, λ; ν).

Considering U ∼ Gamma(ν/2, ν/2), κ(u) = 1/u, Y has the density function:

(6) f(y) = 2
1

σ
√
νπ

Γ((ν + 1)/2)

Γ(ν2 )

(
1 +

d

ν

)−( ν+1
2

)

Φ

(
λ
(y − µ)

σ

)
.

The skew Student-t normal distribution has been developed by Gómez et al. (2007). A particular

case of the StN distribution is the skew-Cauchy distribution, when ν = 1. Also, when ν ↑ ∞, we get

the skew-normal distribution as the limiting case.

•The skew-slash distribution, with the shape parameter ν > 0, SSL(µ, σ2, λ; ν).

With h(u; ν) = νuν−1I(0,1)(u) and κ(u) = 1/u, we have

(7) f(y) = 2ν

∫ 1

0
uν−1ϕ

(
y|µ, σ

2

u

)
duΦ1

(
λ
(y − µ)

σ

)
, y ∈ R.

The skew-slash distribution reduces to the skew-normal distribution when ν ↑ ∞. See Wang

and Genton (2006) for further details.

•The skew-contaminated normal distribution, SCN(µ, σ2, λ; ν, γ), 0 ≤ ν ≤ 1, 0 < γ ≤ 1. Taking

h(u; ν) = νI(u=γ) + (1− ν)I(u=1), τ = (ν, γ)⊤ and κ(u) = 1/u, it follows straightforwardly that

(8) f(y) = 2

{
νϕ

(
y|µ, σ

2

γ

)
Φ1

(
λ
(y − µ)

σ

)
+ (1− ν)ϕ(y|µ, σ2)Φ1

(
λ
(y − µ)

σ

)}
.

The parameter ν represents the percentage of outliers, while γ may be interpreted as a scale

factor. The skew-contaminated normal distribution reduces to the skew-normal distribution when

ν = 0.

•The skew-exponential power distribution, Y ∼ SEP (µ, σ2, λ; ν), with a shape parameter 0 < ν ≤ 1.

Its pdf is given by

(9) f(y) = 2
ν

21/2νσΓ(1/2ν)
e−dν/2Φ1

(
λ
(y − µ)

σ

)
, d = (y − µ)2/σ2.

SSMN Regression Models

Suppose that we have observations on m independent individuals, Y1, . . . , Yn, where Yi ∼
SSMN(µi, σ

2, λ), i = 1, . . . , n. Associated with individual i we assume a known p × 1 covariate

vector xi, which we use to specify the linear predictor µi = x⊤
i β, where β is a p-dimensional vector of

unknown regression coefficients.

(10)

yi = β0 +
∑p

k=1 xikβk + εi, i = 1, · · · , n,
= x⊤

i β + εi,

εi ∼ SSMN(0, σ2, λ,H;κ).
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4. The local influence approach

Consider a perturbation vector w = (w1, ..., wn)
⊤ varying in an open region Ω ∈ Rn. Let

ℓc(θ,w|yc), θ ∈ Rq be the complete-data log-likelihood of the perturbed model. We assume that

there is a w0 such that ℓc(θ,w0|Yc) = ℓc(θ|Yc) for all θ. Let θ̂(w) denote the maximum of the

function Q(θ,w|θ̂) = E[ℓc(θ,w|Yc)|y, θ̂]. The influence graph is defined as α(w) = (w⊤, fQ(w))⊤

where fQ(w) is the Q-displacement function defined as follows:

fQ(w) = 2
[
Q
(
θ̂|θ̂

)
−Q

(
θ̂(w)|θ̂

)]
.

Following the approach developed in Cook (1986) and Zhu and Lee (2001), the normal curvature CfQ,d,

of α(w) at w0 in the direction of some unit vector d can be used to summarize the local behavior of

the Q-displacement function. It can be shown that (see, Zhu and Lee, 2001)

CfQ,d = −2d⊤Q̈wod, −Q̈w0 = ∆⊤
wo

{
−Q̈θ(θ̂)

}−1
∆w0

where Q̈θ(θ̂) =
∂2Q(θ|θ̂)
∂θ∂θ⊤

∣∣∣∣
θ=θ̂

and ∆w =
∂2Q(θ,w|θ̂)

∂θ∂w⊤

∣∣∣∣
θ=θ̂(w)

.

As in Cook (1986), the expression −Q̈w0 is the fundamental equation for detecting influential

observations. A clear picture of −Q̈w0 (a symmetric matrix), is given by its spectral decomposition

−2Q̈wo =
n∑

k=1

ξkeke
′
k,

where (ξ1, e1), . . . , (ξn, en) are the eigenvalue-eigenvector pairs of the matrix −2Q̈wo with ξ1 ≥ . . . ≥
ξq, ξq+1 = . . . = ξn = 0 and e1, . . . , en are elements of the associated orthonormal basis. Zhu and Lee

(2001) proposed to inspect all eigenvectors corresponding to nonzero eigenvalues for more revealing

information but it can be computationally intensive for large n.

The perturbation schemes included in this work are: Case weights, responde variable perturba-

tions, explanatory variable perturbation and perturbation of the scale parameter σ2.

5. Application

This section we consider a analysis of a data set taken from Table 1 of Butler et al. (1990). This

data set was also studied by Azzalini and Capitanio (2003), under asymmetrical model. On the basis

of arguments presented by them, a linear regression is introduced:

y = β0 + β1CRSP + ϵ

where y is the excess rate of the Martin Marietta company, CRSP is an index of the excess rate of

return for the New York market as a whole and ϵ is an error term which in our case is taken to be

distributed as SSMN(0, σ2, λ,H;κ). Data over a period of n = 60 consecutive months are available.

Table 1 presents the ML estimates of the parameters for the normal symmetric normal and the SSMN

models (SN, StN, SEP, SSL and SCN), together with their corresponding standard errors calculated

via the observed information matrix. The log-likelihood values (see row ℓ(θ̂)) indicate that the SMSN

distributions with heavy tails presents the best fit than the SN model, with the SSL, StN and SCN

ones significantly better ( the LR test is comparing all others distributions with SN model).
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Figure 1: SSMN regression models for the Martin Marietta data, with influence points.
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Since E[ε] ̸= 0, the residual for yi is given by ei = yi−x⊤
i β̂− ε̂i, where ϵ̂i = Ê[ϵi]. The estimated

regression lines (Figure 1) are obtained as ŷi = β̂0 + β̂1CRSPi + ϵ̂i.

As an example, Figure 2 presents the index graphs of M(0) for the SN, StN, SSL and SCN

models for case weights perturbation. As can be seen in this figures, the observation 58 is influential

in all models, while observation 8 (above the estimated straight) is influential in the MLEs of the

model SN (actually, in all forms of perturbation, but not showed here).

Table 1: MLEs of the five models fitted on the Martin Marietta data. The values in

parenthesis are estimated asymptotic standard errors, using information matrix.

SN SSL SEP StN SCN

α -0.093(0.013) -0.042(0.031) -0.050(0.006) -0.042(0.024) -0.040(0.014)

β 1.379(0.241) 1.247(0.193) 1.228(0.191) 1.235(0.190) 1.263(0.177)

σ2 0.019(0.004) 0.002(0.001) 0.001(0.001) 0.003(0.002) 0.004(0.001)

λ 3.916(1.405) 0.547(0.636) 0.552(0.165) 0.717(0.649) 0.709(0.392)

ν - 1.101 0.511 2.8 0.089

γ - - - 2.8 0.05

ℓ(θ̂) 66.017 74.014 71.247 73.547 74.694

LR - 15.993 10.461 15.060 17.355

p-value - 0 0.001 0 0
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Figure 2: Martin Marietta’s data set. Index plots of M(0) for case weights perturbation. (a)

Skew normal, (b) skew slash, (c) skew t-normal and (d) skew contaminated normal models.

Dotted lines are the bench-mark for M(0) with c∗ = 3.
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RÉSUMÉ (ABSTRACT) — optional

Ferreira et. al (2011) have defined a skewed version of the scale mixtures of normal distributions

(SSMN) and derived several of its probabilistic and inferential properties, including estimation via EM

algorithm. In this paper, we extend the EM algorithm for linear regression models and we develop

diagnostic analysis via local influence for linear regression models under SSMN models, following Zhu

and Lee’s (2001) approach. Finally, results obtained for a real data set are reported, illustrating the

usefulness of the proposed methodology.
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