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1. Introduction 
 Robust covariance estimation is a central problem in robust statistics and has an extensive literature 
base (see for instance [1]).  Finding an algorithm with desirable properties that works in every situation has 
proven to be very difficult, but several good algorithms that are useful in practice exist (for example [2], [3], 
[4], [5]). 
 In this paper, we present an alternative way of viewing the robust covariance estimation problem by 
posing it as a feature selection problem for a multivariate linear model.  In particular, we set our data matrix 
to be Y, construct X to be a column of 1’s with an identity matrix appended to the right, perform linear 
regression with feature selection in the multivariate linear model of Y onto X, and output as a robust 
covariance matrix the resulting conditional covariance matrix of the regression. This leads to the 
development of a class of algorithms which can be used to construct robust covariance matrices.  We use 
backwards selection as a candidate feature selection algorithm and discuss the results.   
 The rest of this paper is organized as follows: The remainder of this section provides a brief literature 
review on the mean shift outlier model and related ideas.  Section 2 develops the link between feature 
selection and outlier detection and describes our implementation of the backwards selection algorithm for 
multivariate regression.  Section 3 describes results on the data sets we used, and section 4 concludes. 
 
1.1 Literature Review 
 The mean-shift outlier model, which relates outliers to dummy features was originally developed to 
compute efficient diagnostics for linear regression.  Several extensions have been made since then.  For 
instance, [6] relates outliers to dummy features for the case of generalized linear models.  Meanwhile, 
Morgenthaler et al [7] and McCann et al [8] used the relationship to establish a connection between outlier 
detection in linear regression and feature selection, and Kim et al [9] and McCann et al [10] applied this 
connection to developing new outlier detection techniques in linear regression.  In particular, they computed 
a robust coefficient vector by appending an identity matrix to the design matrix and then performing linear 
regression with feature selection.  In this paper, we establish this connection for the case of outlier detection 
in multivariate analysis, where we are interested in the estimation of a robust covariance matrix, rather than a 
robust coefficient vector.  This connection makes it possible to use feature selection algorithms for 
multivariate linear models in order to detect and control for outliers in multivariate data. 
 
2. Methodology 
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 We pose the robust covariance estimation problem as a feature selection problem as follows: We first 
set our data matrix to be Y and construct X by creating one column of 1’s, and then appending a set of 
dummy variable columns, corresponding to observations which are candidate outliers, to the right (in the 
case where we have no knowledge about which observations are outliers, we would append an entire identity 
matrix to the right).  We then perform linear regression with feature selection, or dimension reduction, on 
the multivariate linear model of Y onto X, where Y is considered to be the matrix of realizations of the 
response variables, and X is the design matrix. Our robust estimate of the covariance matrix of the original 
data is then the covariance matrix Σ∈ of the error term for the regression. 
 The justification for our algorithm lies in the following two key relationships: 1. The estimated 
classical covariance matrix for multivariate data is the same as the estimated conditional covariance matrix 
of the multivariate linear model of Y onto X, where Y is the data matrix, and X is a column of 1’s. 2. The 
mean-shift outlier model [11] establishes that performing a regression with deleted observations yields the 
same results (estimated coefficient vector and estimated conditional covariance matrix) as performing a 
regression onto an augmented X matrix, where the augmented columns are dummy columns corresponding to 
the observations deleted in the first model. 
 One could, in principal, use this methodology to apply any feature selection algorithm to estimate a 
robust covariance matrix, though in this paper, we focus on using backwards selection to demonstrate our 
methodology.  In the next subsection, we provide the details of our implementation of backwards selection  
and, in the following subsection, we describe other potential extensions of our methodology, the 
implementation of which will be future work.   
 
2.1 Backwards Selection 
 In our implementation of the generic backwards selection algorithm, we first scale the data (n×r Y 
matrix) by subtracting the column medians and dividing by the column mads and construct the n × (n+1) X 
matrix with the entire identity matrix appended to the right of the column of 1’s.  We then eliminate the 
least ‘relevant’ feature of X at each step.  In particular, in a given iteration where there are q features, we 
find the q−1 features such that the determinant of the sample conditional covariance matrix, εΣ̂ , is 
minimized and keep those features.   If there are ties, as in the case where q ≥ n−r, we instead compare the 
product of nonzero diagonal elements of S, where USVT is the SVD of εΣ̂  (when all diagonal elements are 
nonzero, this is the determinant).  When there are ties in this nonzero product, as in the case where q = n, 
we instead compare 1ˆ

MLEβ , where the norm is the L1 vector norm rather than the matrix norm.  Note 
that a high breakdown robust start is not required to initiate this process. 
 
2.2 Other Implications of the Methodology 
 The ideas in this paper lead to immediate extensions in the case where we have some prior knowledge 
or a good heuristic.  If, for instance, we had some candidate outliers, we could append only dummy 
columns corresponding to them to the column of 1’s in the design matrix, rather than appending the entire 
identity matrix.  Alternatively, one could also add artificial rows to the bottom of X and Y to specify prior 
knowedge in the sense of mixed estimation [12].  In addition, if we could specify a reasonable guess at what 
Σ could be, say Σguess, then one could use alternative feature selection algorithms and dimension reduction 
algorithms.  A full exploration of these other implications will be future work. 
 
3. Results on Real and Simulated Data 
 
3.1 Description of Data Sets 
 We evaluate backward elimination on two data sets:  The Hertzsprung-Russell Star Data [13] and the 
Wine Data [14]. 
 Our first data set, the Hertzsprung-Russell Star Data set is an example of a Hertzsprung-Russell star 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS032) p.4639



data set used to make a Hertzsprung-Russell star diagram, which is a scatter plot of a star's luminosity against 
its temperature on a log scale.  In the original data set, there are 47 observations and one explanatory 
variable.  Figure 1 shows a plot of the data set.  There are four gross outliers at the upper left and two 
moderate outliers (in Figures 1 and 2, these are the six observations with the highest number, although in the 
original data sets, these are observations 11, 20, 30, and 34, and observations 7 and 9 respectively).  The 
data set is typically used to demonstrate robust linear regression algorithms, but we treat the response and 
explanatory data together as multivariate data in this paper, because it is nonetheless a good demonstration of 
influential, masked outliers, which can easily be visualized. 
 

Figure 1: Plot of Hertzsprung-Russell Star Data with Sequence Numbers 
 
 Our second data set, the Wine Data, is explored in [1].  It contains, for each of 59 wines grown in the 
same region in Italy, the quantities of 13 constituents.  There are known to be at least 7 masked outliers in 
this data set, the corresponding observation numbers being: {20, 22, 47, 40, 44, 46, 42}. 
 
3.2 Evaluation of our method 
 For each of the two data sets, the specified outliers are among the last features eliminated in our 
algorithm, indicating that our algorithm correctly identifies them as the most outlying points.  Figure 1 
shows the plot of the Hertzsprung-Russell Star Data with the point number representing when in the 
algorithm the dummy variable corresponding to the point was eliminated thus adding that observation back 
into the data set.  This figure demonstrates that our algorithm does well from the start (when the entire 
identity matrix is appended). 
 Figures 2 and 3 show the plot of the log of the determinant of the covariance matrices vs. the step of 
the algorithm for the respective data sets.  In Figure 3, the outliers {20, 22, 47, 40, 44, 46, 42} are the seven 
observations added back at the right (53 to 59).  Based on the descriptions of the data sets, the indicated 
time to stop is clear for the Hertzsprung-Russell Star Data and Wine Data. 
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Figure 2: Plot for Hertzsprung-Russell Star Data Outlier Selection 

 
Figure 3: Plot for Wine Data Outlier Selection 

 
It should also be noted that although our algorithm identified the seven prominent masked outliers in the 
wine data, the description of the wine data indicated the presence of some other minor outliers, some of 
which the backwards selection algorithm eliminated early in its search.  Hence, our algorithm is not perfect, 
but we tested it in the harder case with the assistance of no prior knowledge or heuristic.  When we 
provided our algorithm with a hint by appending an extra row corresponding to adding prior knowledge that 
the data should be centered near the coordinate-wise median, the algorithm worked satisfactorily for the data 
set. 
 
4. Conclusion 
 We have proposed an alternative way of viewing the problem of outlier detection in multivariate data, 
by posing it as a feature selection problem for a multivariate linear model.  We have also implemented this 
idea, using backward selection as a feature selection method, producing good results on the data sets 
attempted.  Backward selection in itself is not guaranteed to work on any data set, but we hope that it 
provides one useful method for the computation of robust covariance matrices, and that the idea of viewing 
robust covariance estimation as a feature selection problem in a multivariate linear model leads to the 
development of other effective methods for detecting outliers in multivariate data. 
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RÉSUMÉ (ABSTRACT) 
Recent literature has established a connection between outlier detection in linear regression, and feature 
selection on an augmented design matrix. In this paper, we establish this connection for the case of outlier 
detection in multivariate analysis, where we are interested in the estimation of a robust covariance matrix. 
This connection makes it possible to use feature selection and dimension reduction algorithms for 
multivariate linear models in order to detect and control for outliers in multivariate data, thus opening up a 
new class of algorithms to deal with multivariate outliers. We explore one such algorithm, using backwards 
selection as the feature selection method of choice. We test this algorithm on real data and discuss the results. 
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