
Sensitivity Analysis for Multiple Similarity Method

and its Application

Kuniyoshi, Hayashi
Graduate School of Information Sciences and Technology, Hokkaido University
N14W9, Kita-ku
Sapporo, Hokkaido, 0600814, JAPAN
E-mail: k-hayashi@iic.hokudai.ac.jp

Yutaka, Tanaka
Institute of Statistical Mathematics
10-3, Midori-cho
Tachikawa, Tokyo, 1908562, JAPAN
E-mail: ytanaka@ems.okayama-u.ac.jp

Introduction

Sensitivity analysis based on influence functions has been developed for many multivariate sta-
tistical methods. To evaluate the influence of observations and detect outliers in linear discriminant
analysis, the influence functions have been derived by Campbell (1978), Huang et al. (2007) and others
and these influence functions were used for detecting influential observations to the result of analysis.

In the field of pattern recognition, there have been developed several kinds of discriminant
analysis. They include a group of methods called by linear subspace methods (Oja, 1983) such
as CLAss Featuring Information Compression or CLAFIC method (Watanabe, 1967) and Multiple
Similarity Method or MSM (Iijima, 1973; Omachi and Aso, 2000). The basic idea of the subspace
methods is to find a low dimensional subspace which represents the distribution of each class in
the feature space and evaluate in which subspace an observation or unknown feature vector can be
approximated well.

For these methods of discriminant analysis, it would be important to develop methods of sensitiv-
ity analysis or statistical diagnostics as it is for classical discriminant analysis. From this perspective,
Hayashi et al. (2010) studied sensitivity analysis for CLAFIC method and proposed a method of
multiple-case as well as single-case diagnostics.

In this paper, we study sensitivity analysis for MSM. At first, we introduce a discriminant score
to measure the goodness of classification, then derive sample and empirical influence functions for a
statistics which plays an important role in the discriminant score and finally propose a procedure of
sensitivity analysis for MSM using these influence functions with a numerical example to illustrate the
effectiveness of the proposed method.

Multiple Similarity Method (MSM)

Let xxxk
i (i = 1, . . . , nk; k = 1, . . . , K) be the i-th p dimensional observations in the k-th class of

the training sample. Then, the autocorrelation matrix in the k-th class is 1/nk
∑nk

i=1 xxxk
i xxx

k
i
T(= Ĝk).

Using the eigenvalues λ̂k
i and the eigenvectors ûuuk

i , multiple similarity or transformation matrix from
original feature space to the subspace is define as

M̂k =
pk∑

s=1

√
λ̂k

s√
λ̂k

1

ûuuk
sûuu

k
s
T, (1 ≤ pk ≤ p),(1)

where pk is equal to the minimum value m satisfying τ ≤
∑m

s=1 λ̂k
s∑p

s=1 λ̂k
s

(1 ≤ m ≤ p). When an input
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datum comes as a test observation xxx, we project xxx to M̂kxxx and calculate the projected norm onto each
class, ||M̂kxxx||. Next, we calculate the squared value each class with the projection norm and classify
xxx into the class that gives the maximum squared projection norm.

Discriminant score and its average

We define a discriminant score of xxxk
i as

ẑk
i = xxxk

i
TQ̂kxxx

k
i , (1 ≤ i ≤ nk),(2)

where

Q̂k =
K

K − 1

(
M̂k − 1

K

K∑
ℓ=1

M̂ ℓ

)
.(3)

In addition, we calculate an average of the discriminant scores as follows.

Ẑk =
1
nk

nk∑
i=1

ẑk
i .(4)

If the value of Ẑk is large, we can understand that the k-th class is separated well from other classes.

Influence functions for Q̂k

In MSM, Q̂k in equation (3) is an important statistics. This statistics appears in not only
equation (2) but also equation (4). Then, we particularly focus on Q̂k. If the sample influence
function has a good approximation for the empirical influence function, to detect the relationship
of influence patterns of observations in multiple-case diagnostics, we can use the additive property
of empirical influence function (Tanaka, 1994). In this section, we derive the sample and empirical
influence functions.

The sample influence function for Q̂k at a point of xxxg
j is

(5) SIF(xxxg
j ; Q̂k) ≡ Q̂

(1)g(−j)
k = −(ng − 1) · (Q̂g(−j)

k − Q̂k),

where g = 1, . . . ,K and j = 1, . . . , ng. The superscript notation g(−j) represents deleting j-th
observation in g-th class.

The empirical influence function for Q̂k at a point of xxxg
j is

EIF(xxxg
j ; Q̂k) = lim

ε→0

Q̂gj
k − Q̂k

ε
≡ Q̂

(1)gj
k = γ ·

{ pg∑
s=1

p∑
t=pg+1

λ̂g
s

λ̂g
1

(λ̂g
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−1âg

st
(1)(ûuug
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T + ûuug

t ûuu
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T)

(6) +
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pg∑
t=1

âg
st

(1)

λ̂g
1
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sûuu

g
t
T −
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λ̂g
sλ̂

g
1
(1)

λ̂g
1

2 ûuug
sûuu

g
s
T

}
,

where âg
st

(1) is equal to ûuug
s
T(x̂xxg

jx̂xx
g
j
T − Ĝg)ûuu

g
t (j = 1, . . . , ng) and λ̂

g(1)
1 is equivalent to âg

11
(1). The

superscript notation gj means the derivation of Q̂k at a point of xxxg
j . In the case of perturbing

xxxg
j (g = k), γ is equal to 1. In other cases (g ̸= k), γ is equivalent to − 1

K−1 .

Sensitivity analysis for MSM

In this section, we develop sensitivity analysis for MSM including a single-case and multiple-case
diagnostics based on Tanaka (1994).
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Single-case diagnostics

Since SIF(xxxg
j ; Q̂k) and EIF(xxxg

j ; Q̂k) are matrices, to evaluate the influence of a sample observation

for Q̂k, we summarize them into scalar measures Ẑ
g(−j)
k and Ẑgj

k ,

(7) Ẑ
g(−j)
k =

1
nk

nk∑
i=1

xxxk
i
TQ̂

(1)g(−j)
k xxxk

i

and

(8) Ẑgj
k =

1
nk

nk∑
i=1

xxxk
i
TQ̂

(1)gj
k xxxk

i .

If the value of Ẑ
g(−j)
k or Ẑgj

k is large, we can confirm that a point of xxxg
j has large influence.

Multiple-case diagnostics

In this study, we evaluate the influence of multiple observations for Q̂k based on the discus-
sion about Cook (1986), Tanaka (1994), Tanaka et al. (1999) and Tanaka et al. (2003). Here, we
determine a target statistics as vech(Q̂k) by considering the symmetric property of Q̂k. We denote
the unperturbed weights for ng observations as wwwg

0 = (1, 1, . . . , 1)T and also represent the weights
for the perturbed observations as wwwg. In the framework of Cook’s diagnostics (1986), to evaluate the
influence of observations, the change from vech(Q̂k) that is estimated by the log likelihood function for
the unperturbed case, L(vech(Qk)|wwwg

0) to vech(Q̂kwwwg) that is estimated by the log likelihood function
for the perturbed case, L(vech(Qk)|wwwg) is measured as

(9) D(wwwg) = 2

[
L(vech(Q̂k)|wwwg

0) − L(vech(Q̂kwwwg)|wwwg
0)

]
.

Then, the change along a line wwwg = wwwg
0 + thhh (||hhh|| = 1) plays an important role. Cook (1986)

investigated the direction that had the largest curvature at wwwg
0. D(wwwg) can be rewritten as

(10) Chhh = hhhT

[
∂vech(Q̂kwwwg)T

∂wwwg

][
− ∂2L

∂vech(Qk)∂vech(Qk)T

][
∂vech(Q̂kwwwg)

∂wwwgT

]
hhh,

where [∂vech(Q̂kwwwg)/∂wwwg] and [−∂2L/∂vech(Qk)∂vech(Qk)T] are evaluated at wwwg = wwwg
0 and vech(Qk) =

vech(Q̂k), respectively (Tanaka, 1994). To search the most influential direction, we have to maximize

Chhh under ||hhh|| = 1. In this regard, [∂vech(Q̂kwwwg)/∂wwwg] is (1/ng) ·
{

EIF(xxxg
j ; vech(Q̂k))

}
. We denote{

EIF(xxxg
j ; vech(Q̂k))

}
as [EIFg]. In addition, by an asymptotically normally and efficient properties in

an ML estimator, equation (10) can be written as Chhh = hhhT[EIFg]
[
âcov(vech(Q̂k))

]−1

[EIFg]Thhh. Then,

the most influential direction is calculated as the eigenvector associated with the largest eigenvalue
in [EIFg][âcov(vech(Q̂k))]−1[EIFg]T. In the estimation of âcov(vech(Q̂k)), we use jackknife method as
follows.

âcov(vech(Q̂k)) ∼= V JACK / k =

(11)
R − 1

R

R∑
i=1

[
vech(Q̂k)R−1,i −

1
R

R∑
j=1

vech(Q̂k)R−1,j

][
vech(Q̂k)R−1,i −

1
R

R∑
j=1

vech(Q̂k)R−1,j

]T

,
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where R is the number of total sample size.
From equation (6), we can understand that the influence of xxxk

j for Q̂k is −(K − 1) times that of
xxxg

j (g ̸= k) for Q̂k. Then, we only focus on the influence of xxxk
j for Q̂k to search the similar influence

patterns of observations in each class. To get the influence directions of observations for Q̂k, we
calculate the following eigenvalue problem.

(12)
[
[EIFk]

[
âcov(vech(Q̂k))

]−1

[EIFk]T − λIII

]
hhh = 0.

With our proposed method in multiple-case diagnostics, we can visually find the influence patters of
multiple observations with a few dimensions.

Application

We show the effectiveness of our sensitivity analysis through a numerical example. Here, we
deal with the identification problem of 5 classes. The number of dimensions and that of observations
in each class are 100 and 30, respectively. Datasets of Classes 1, 4 and 5 are generated assuming
3-contaminated multivariate normal distributions with different parameters, and those of Classes 2
and 3 are generated assuming 2-contaminated multivariate normal distribution and a multivariate
normal distribution, respectively. To contaminate outlying observations, we generated the 23rd and
24th observations of Class 5 using the parameter of Class 4 instead of Class 5.

Under the above situation, we firstly set that the norms of all the training and test observations
were normalized to one. We determined the value of τ as 0.9973 based on leave-one out cross validation
and developed a classifier with MSM. The results of the training and test datasets in each class are
shown in Table 1. From these results, we could understand that the observations in Class 4 and Class
5 were not discriminated well. In this situation, we firstly applied our single-case diagnostics.

When we perturbed the 23rd and 24th observations in Class 5, the scalar influence measures by
the sample influence function showed the change that the observations in Class 4 were discriminated
well than Class 5 (Figure 1). To confirm the relationship of the sample influence function and empirical
influence function, we plotted

∑5
k=1 Ẑ

5(−j)
k and

∑5
k=1 Ẑ5j

k (j = 1, . . . , 30) in a horizontal x-axis and
vertical y-axis, respectively (Figure 2). From Figure 2, we could see that the sample influence function
was nearly approximated with the empirical influence function. Figure 3 shows the scatterplots of PC
scores of influence functions of observations in Class 5 for PC1 and PC2. From Figure 3, we could see
that they had the same influence. We finally deleted them in training data at a time and redeveloped
the classifier so that we got Table 2.

Concluding remarks

In this paper, we defined a discriminant score for MSM and we derived the influence func-
tions. With these influence functions, we proposed sensitivity analysis for MSM and illustrated the
effectiveness of our method through a numerical example.

Table 1: Results of MSM applied to training and test datasets

Class1 Class2 Class3 Class4 Class5
Class1 30 0 0 0 0
Class2 0 30 0 0 0
Class3 0 0 30 0 0
Class4 0 0 0 24 6
Class5 0 0 0 0 30

Class1 Class2 Class3 Class4 Class5
Class1 300 0 0 0 0
Class2 0 300 0 0 0
Class3 0 0 300 0 0
Class4 0 0 0 230 70
Class5 0 0 0 0 300
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Figure 1: Indexplot of the average of discriminant scores for the observations in each class
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Figure 2: SIF vs EIF Figure 3: Influence patterns

Table 2: Results of training and test data after diagnostics

Class1 Class2 Class3 Class4 Class5
Class1 30 0 0 0 0
Class2 0 30 0 0 0
Class3 0 0 30 0 0
Class4 0 0 0 30 0
Class5 0 0 0 2 28

Class1 Class2 Class3 Class4 Class5
Class1 300 0 0 0 0
Class2 0 300 0 0 0
Class3 0 0 300 0 0
Class4 0 0 0 300 0
Class5 0 0 0 0 300
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