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1. Introduction

Consider the polynomial regression model of degree n:

(1) yh = f(t; c) + εh, f(t; c) = c>ψ(t) =
n∑

i=0

cit
i, t ∈ T,

h = 1, . . . , N , where ψ(t) = ψn(t) = (1, t, . . . , tn)> and c = (c0, c1, . . . , cn)> are column vectors in
Rn+1. The errors εh are independently distributed as the normal distribution N(0, σ2). T ⊆ R is the
region of the explanatory variable t where the model (1) is defined. Typically, T is a bounded interval
in R. We assume that sufficient statistics of the model (1), that is, the ordinal least square estimator
ĉ of c, and when σ2 is unknown, the unbiased variance estimator σ̂2 of σ2 distributed independently
of ĉ are available.

In this paper, we deal with the hypothesis of positivity, or the hypothesis of superiority:

(2) f(t; c) ≥ 0 for all t ∈ T .

To state its statistical meaning, it is natural to consider a two sample problem. Let f(t; c(j)) = c>(j)ψ(t)
(j = 0, 1) be polynomial regression curves of two groups. The hypothesis that the polynomial curve
of group 1 is always bounded below by, or superior to, group 0 is expressed as f(t; c(1)) ≥ f(t; c(0)) for
all t ∈ T . Taking the difference, we see that (2) stands for the hypothesis of superiority. This notion
is particularly important in statistical tests for assessing new drugs (Liu, et al. (2009)).

The set of coefficients c satisfying (2) forms a closed convex cone

(3) K = Kn =
{
c ∈ Rn+1 | c>ψ(t) ≥ 0, ∀t ∈ T

}
.

This is referred to as the cone of positive polynomials (nonnegative polynomial cone). The hypothesis
(2) is rewritten as c ∈ K. Including this hypothesis, we consider hierarchical hypotheses

(4) H0 : c = 0, H1 : c ∈ Kn, and H2 : c ∈ Rn+1 (c is unrestricted).

We then formalize the test for positivity as the likelihood ratio test (LRT) for testing H1 against H2.
In addition, we define a LRT for testing H0 against H1. In the context of the two sample problem,
this is the test for the equality of two regression curves against the hypothesis of superiority. It is
mathematically convenient to treat the two LRTs in a paratactic way.
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The theory of LRTs for convex cone hypotheses has been developed under the name of order
restricted inference (Robertson, et al. (1988)). The general theorem states that the null distribution
of LRT statistics is a finite mixture of chi-square distributions (Shapiro (1988)). When the cone has
piecewise smooth boundaries, Takemura and Kuriki (1997) proved that the weights (mixing proba-
bilities) are expressed in terms of curvature measures on boundaries. This methodology is called the
volume-of-tube method. However, there are few cones whose weights are obtained explicitly.

As the main result of the paper, we derive the weights associated with the cone of positive
polynomials K, that is, the null distribution of the LRT for positivity. Thanks to the representation
(parameterization) theorem for the positive polynomial cone and its dual cone developed in the frame-
work of the Tchebycheff systems (Karlin and Studden (1966)), we evaluate the all weights when the
degree n of the polynomial regression is less than or equal to 4.

Throughout the paper, descriptions on confidence bands, technical details including proofs, and
numerical examples are omitted. See Kato and Kuriki (2011) for the details.

2. Likelihood ratio test statistics

We write the inner product and the norm as 〈x, y〉Q = x>Qy and ‖x‖Q =
√

〈x, x〉Q, where Q is
a positive definite matrix. The orthogonal projection of x onto the set A with respect to the distance
‖ ‖Q is denoted by ΠQ(x|A) = argminy∈A ‖x − A‖Q. The subscript Q in 〈 , 〉Q, ‖ ‖Q, and ΠQ will be
omitted when it does not cause any confusion.

In the regression model (1) with σ2 known, the least square statistics ĉ is the sufficient statistic,
and we can restrict our attention to the inference based on ĉ. The distribution of ĉ is the normal
distribution Nn+1(c,Σ), where Σ = σ2Σ0 with Σ0 =

(∑N
i=1 ψ(ti)ψ(ti)>

)−1, the inverse of the design
matrix. When σ2 is unknown, the sufficient statistics is the pair (ĉ, σ̂2), where σ̂2 is the unbiased
estimator of σ2 calculated from the residuals, and is distributed proportionally to the chi-square
distribution with ν = N − n− 1 degrees of freedom.

Given the data ĉ distributed as Nn+1(c,Σ) with Σ = σ2Σ0 known, the MLE of c under the
hypothesis of positivity H1 : c ∈ K is the orthogonal projection ĉK of ĉ onto the cone K under the
metric 〈 , 〉Σ−1 . When σ2 is unknown, the MLE is the orthogonal projection onto K under the metric
〈 , 〉

bΣ−1 , Σ̂ = σ̂2Σ0. This MLE is the same as that with Σ known. The MLEs of c under H0 and H2

are given as 0 and ĉ, respectively. Acknowledging these facts, we get the LRT statistics.

Proposition 1. When the variance σ2 is known, the LRT statistics for H0 against H1, and H1 against
H2 are given by

(5) λ01 = ‖ĉK‖2
Σ−1 and λ12 = ‖ĉ‖2

Σ−1 − ‖ĉK‖2
Σ−1 ,

respectively, where ĉK = ΠΣ−1(ĉ|K). When the variance σ2 is unknown, and an independent and
unbiased estimator σ̂2 of σ2 with ν degrees of freedom is available, the LRT statistics for H0 against
H1, and H1 against H2 are given by

(6) β01 =
‖ĉK‖2

bΣ−1

‖ĉ‖2
bΣ−1

+ ν
and β12 =

‖ĉ‖2
bΣ−1

− ‖ĉK‖2
bΣ−1

‖ĉ‖2
bΣ−1

− ‖ĉK‖2
bΣ−1

+ ν
,

respectively, where Σ̂ = σ̂2Σ0, ĉK = Π
bΣ−1(ĉ|K). The null hypotheses are rejected when the statistics

are greater than critical points.

The hypothesis of positivityH1 is a composite hypothesis. The proof of the following proposition
is essentially given in Section 2.3 of Robertson, et al. (1988).

Proposition 2. In both cases where σ2 is known or unknown, the least favorable configurations of the
LRTs for testing H1 against H2 is given by H0, i.e., c = 0.
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3. The volume-of-tube method

Here, we give a brief summary of the volume-of-tube method. Historically, the distributions
of the orthogonal projection of a zero-mean Gaussian random vector have been well studied in order
restricted inference. From the general theory, the statistics λ01 and λ12 in (5) under H0 : c = 0 have
the following distribution:

(7) PH0(λ01 ≥ a, λ12 ≥ b) =
n+1∑
i=0

wiḠi(a)Ḡn+1−i(b),

where Ḡi is the upper probability of the chi-square distribution with i degrees of freedom. Note that
Ḡ0(a) = 1 (a < 0), 0 (a ≥ 0). In addition, the distribution of the LRTs β01 and β12 in (6) under H0

is expressed as follows:

(8) PH0(β01 ≥ a, β12 ≥ b) =
n+1∑
i=0

wiB̄ i
2
, n+1−i+ν

2
(a)B̄n+1−i

2
, ν
2
(b),

where B̄a,b is the upper probability of the beta distribution with parameter (a, b).
The coefficients wi appearing in (7) and (8) are nonnegative and satisfy

∑
iwi = 1. The

distribution (7) is a finite mixture distribution of the chi-square distributions refereed to as the chi-
bar-square (χ̄2) distribution.

When the cone K in (4) is polyhedral, that is, a finite intersection of half spaces, the weights
{wi} can be understood in terms of the internal and external angles of each face of the cone. Moreover,
in the general case where K is not polyhedral, Takemura and Kuriki (1997) proved that the weights
{wi} are expressed as integrals of elementary symmetric polynomials of principle curvatures of the
boundaries of the cone K. These integrals are not easy to handle in general. However, the weights of
the two highest degrees and two lowest degrees, wn+1, wn, w0, w1 have relatively simple forms:

wn+1 =
Voln(K ∩ Sn)

Voln(Sn)
, wn =

Voln−1(∂K ∩ Sn)
2 Voln−1(Sn−1)

,(9)

w1 =
Vol∗n−1(∂K

∗ ∩ (Sn)∗)
2Voln−1((Sn−1)∗)

, w0 =
Vol∗n(K∗ ∩ (Sn)∗)

Vol∗n(Sn)
,

where K∗ is the dual cone of K referred to as the moment cone, and ∂K and ∂K∗ are the boundaries,
Sn = {x ∈ Rn+1 | ‖x‖Σ−1 = 1}, (Sn)∗ = {x ∈ Rn+1 | ‖x‖Σ = 1} are the unit spheres, and Vold and
Vol∗d are d-dimensional volumes induced by the metrics 〈 , 〉Σ−1 and 〈 , 〉Σ, respectively. The volume
of the unit sphere is Vold−1(Sd−1) = Vol∗d−1((Sd−1)∗) = 2πd/2/Γ(d/2).

Moreover, a useful relation is known as a consequence of the Gauss-Bonnet theorem:

(10)
∑
i:odd

wi =
∑

i:even

wi =
1
2
.

The distribution of β01 with ν = 0 is interpreted as the volume formula of a spherical tubular
neighborhood as below. Let M = K ∩Sn be the intersection of the cone K in (3) and the unit sphere.
Define the spherical tube about M with the radius θ:

Tube(M, θ) =
{
x ∈ Sn | min

y∈M
dist(x, y) ≤ θ

}
, dist(x, y) = cos−1〈x, y〉.

Then, because β01 = ‖Π(ĉ|K)‖2/‖ĉ‖2 ≥ cos θ ⇔ ĉ/‖ĉ‖ ∈ Tube(M, θ), and ĉ/‖ĉ‖ is distributed uni-
formly on Sn under H0, we see that

Voln(Tube(M, θ))
Voln(Sn)

= PH0(β01 ≥ cos θ) =
n+1∑
i=0

wiB̄ i
2
, n+1−i

2
(cos θ),
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where Voln is the spherical volume defined on Sn induced by the metric 〈 , 〉 = 〈 , 〉Σ−1 of the ambient
space Rn+1. This is the reason why our methodology is called the tube method (Kuriki and Takemura
(2009)).

4. Representations for the cones K and K∗

In order to evaluate the volumes in (9), we need to introduce “local coordinates” of the cones K
and K∗, and their boundaries. This is actually possible by means of the representations in the theory
of Tchebycheff systems. Three cases can be considered: (i) T = [a, b] (bounded), (ii) T = [a,∞), (iii)
T = (−∞,∞). We deal with the case (i) only here for simplicity. Let ψn(t) = (1, t, . . . , tn)> (|t| <∞),
(0, . . . , 0, (±1)n)>, (t = ±∞). Let R+ = (0,∞), and

(11) ∆m = ∆m(T ) = {τ = (τ1, . . . , τm) ∈ (intT )m | τ1 < · · · < τm}.

Proposition 3. The moment cone K∗
n on T = [a, b] has the following almost sure representations:

K∗
n = φ(U)

n,n

(
R[n+1

2 ]+1

+ × ∆[n
2 ]

)
= φ(L)

n,n

(
R[n

2 ]+1

+ × ∆[n+1
2 ]

)
(12)

almost surely with respect to the (n+ 1)-dimensional Lebesgue measure, where

(13) φ
(U)
n,l (ρ, τ) =

{∑m
i=1 ρiψn(τi) + ρm+1ψn(b) (l = 2m),

ρ1ψn(a) +
∑m

i=1 ρi+1ψn(τi) + ρm+2ψn(b) (l = 2m+ 1),

(14) φ
(L)
n,l (ρ, τ) =

{
ρ1ψn(a) +

∑m
i=1 ρi+1ψn(τi) (l = 2m),∑m+1

i=1 ρiψn(τi) (l = 2m+ 1).

The maps φ(U)
n,n and φ(L)

n,n in (12) are diffeomorphic.

Remark 1. The representation with (13) is called the upper representation. The representation with
(14) is called the lower representation.

Proposition 4. Let ∆m be defined in (11). Let φ(U)
n,l and φ

(L)
n,l be defined in (13) and (14). The

boundary of the moment cone ∂K∗
n has the following almost sure representation:

∂K∗
n = φ

(L)
n,n−1

(
R[n−1

2 ]+1

+ × ∆[n
2 ]

)
t φ(U)

n,n−1

(
R[n

2 ]+1

+ × ∆[n−1
2 ]

)
(15)

almost surely with respect to the n-dimensional Hausdorff measure, where t means disjoint union.
The maps φ(U)

n,n−1 and φ(U)
n,n−2 in (15) are diffeomorphic.

Proposition 5. The positive polynomial cone Kn on T = [a, b] is represented as Kn = ϕn

(
R2

+×∆n−1

)
almost surely with respect to the (n+1)-dimensional Lebesgue measure. Here, the function ϕn(α, γ) ∈
Rn+1 with α = (α1, α2) ∈ R2

+ and γ = (γ1, . . . , γn−1) ∈ ∆n−1 is the coefficients of the polynomial
pn(t;α, γ) = ϕn(α, γ)>ψn(t) in t defined below:

pn(t;α, γ) =

{
α1

∏m
j=1(t− γ2j−1)2 + α2(t− a)(b− t)

∏m−1
j=1 (t− γ2j)2 (n = 2m),

α1(t− a)
∏m

j=1(t− γ2j)2 + α2(b− t)
∏m

j=1(t− γ2j−1)2 (n = 2m+ 1).

The map ϕn is a diffeomorphism.

Proposition 6. The boundary of the positive polynomial cone ∂Kn has the almost sure representation
below. Define the functions ϕ(i)

n (α, γ, γ̃) ∈ Rn+1 with α ∈ R2
+, γ ∈ ∆n−1−i, γ̃ ∈ R, by the coefficient

vectors of polynomials as (t− γ̃)ipn−i(t;α, γ) = ϕ
(i)
n (α, γ, γ̃)>ψn(t) (i = 1, 2). Then,

∂Kn = ϕ(2)
n

(
R2

+ × ∆n−3 × T
)
t ϕ(1)

n

(
R2

+ × ∆n−2, a
)
t

{
−ϕ(1)

n

(
R2

+ × ∆n−2, b
)}

almost surely with respect to the n-dimensional Hausdorff measure, where t means disjoint union.
The maps ϕn, ϕ(1)

n (·, a), ϕ(1)
n (·, b), and ϕ(2)

n are diffeomorphisms.
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5. Volume formulas and the weights

The diffeomorphic maps appearing in Propositions 3, 4, 5, and 6 are homogeneous functions with
respect to their first arguments ρ and α. Therefore, by restricting the length of the first argument,
we can construct almost sure representations for the intersections with the unit sphere. For example,
φ

(U)
n,n(rρ, τ) = rφ

(U)
n,n(ρ, τ) for a constant r > 0, and we have

K∗
n ∩ (Sn)∗ = φ̄(U)

n,n

(
S[n+1

2 ]+1

+ × ∆[n
2 ]

)
a.s.,

where φ̄
(U)
n,l (ρ, τ) = φ

(U)
n,l (ρ, τ)/‖φ(U)

n,l (ρ, τ)‖Σ, and Sm
+ =

{
ρ = (ρi) ∈ Rm+1 |

∑
ρ2

i = 1, ρi >

0
}
. Define φ̄(L)

n,l (ρ, τ) = φ
(L)
n,l (ρ, τ)/‖φ(L)

n,l (ρ, τ)‖Σ, ϕ̄n(α, γ) = ϕn(α, γ)/‖ϕn(α, γ)‖Σ−1 , ϕ̄(i)
n (α, γ, γ̃) =

ϕ
(i)
n (α, γ, γ̃)/‖ϕ(i)

n (α, γ, γ̃)‖Σ−1 (i = 1, 2), similarly.
In the proposition below, let θ = (θi) ∈ Θm be the local coordinates of Sm

+ . For example,

ρ = ρ(θ) =
(
θ1, . . . , θm,

√
1 −

∑
θ2
i

)
, θ ∈ Θm = Rm

+ . Another example is the polar coordinates.

Proposition 7. Let dθ =
∏
dθi and dτ =

∏
dτi be the Lebesgue measures.

Vol∗(K∗
n ∩ (Sn)∗) =

∫
Θ[n+1

2 ]×∆[n
2 ]

det

{(
∂φ̄

(U)
n,n(ρ, τ)
∂(θ, τ)

)>
Σ

(
∂φ̄

(U)
n,n(ρ, τ)
∂(θ, τ)

)} 1
2

dθ dτ,

Vol(∂K∗
n ∩ (Sn)∗) =

∫
Θ[n−1

2 ]×∆[n
2 ]

det

{(
∂φ̄

(L)
n,n−1(ρ, τ)
∂(θ, τ)

)>
Σ

(
∂φ̄

(L)
n,n−1(ρ, τ)
∂(θ, τ)

)} 1
2

dθ dτ

+
∫

Θ[n
2 ]×∆[n−1

2 ]
det

{(
∂φ̄

(U)
n,n−1(ρ, τ)
∂(θ, τ)

)>
Σ

(
∂φ̄

(U)
n,n−1(ρ, τ)
∂(θ, τ)

)} 1
2

dθ dτ.

Proposition 8. Let dγ =
∏
dγi be the Lebesgue measure. Let α = (cos θ, sin θ).

Vol(Kn ∩ Sn) =
∫

(0, π
2
)×∆n−1

det

{(
∂ϕ̄n(α, γ)
∂(θ, γ)

)>
Σ−1

(
∂ϕ̄n(α, γ)
∂(θ, γ)

)} 1
2

dθ dγ,

Vol(∂Kn ∩ Sn) =
∫

(0, π
2
)×∆n−3×T

det

{(
∂ϕ̄

(2)
n (θ, γ, γ̃)
∂(θ, γ, γ̃)

)>
Σ−1

(
∂ϕ̄

(2)
n (θ, γ, γ̃)
∂(θ, γ, γ̃)

)} 1
2

dθ dγ dγ̃

+
∑

c∈{a,b}

∫
(0, π

2
)×∆n−2

det

{(
∂ϕ̄

(1)
n (α, γ, c)
∂(θ, γ)

)>
Σ−1

(
∂ϕ̄

(1)
n (α, γ, c)
∂(θ, γ)

)} 1
2

dθ dγ.

Substituting the volumes obtained in Propositions 7 and 8 into (9), we get wn+1, wn, w0, w1.
Combined with the Gauss-Bonnet theorem (10), all weights {wi} for n ≤ 4 are obtained.

(w0, . . . , wn+1) =


(

1
2 − wn, w1, wn,

1
2 − w1

)
(n = 2),(

w0, w1,
1
2 − w0 − wn+1, wn, wn+1

)
(n = 3),(

w0, w1,
1
2 − w0 − wn,

1
2 − w1 − wn+1, wn, wn+1

)
(n = 4).
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6. A numerical procedure for MLE

To obtain the LRT statistics λ01 and λ12 in (5), we need to conduct the orthogonal projection
onto the positive polynomial cone K. For this purpose, the following symmetric cone programming
technique is useful.

The positive polynomial pn(t) of degree n on T is characterized in Proposition 5. This is a
unique representation. Admitting the redundancy of the parameters, this polynomial is rewritten as

(16) pn(t) =

{
ψm(t)>Q1ψm(t) + (t− a)(b− t)ψm−1(t)>Q2ψm−1(t) (n = 2m),

(t− a)ψm(t)>Q1ψm(t) + (b− t)ψm(t)>Q2ψm(t) (n = 2m+ 1),

where Q1 and Q2 are symmetric positive semidefinite matrices. This polynomial (16) is obviously
nonnegative on T = [a, b]. Conversely, the polynomial pn(t) in Proposition 5 can be written as (16).
This representation is sometimes referred as the Markov-Lukacs theorem (Nesterov (2000)).

By arranging the terms, the polynomial pn(t) in (16) can be written as pn(t) = e(Q1, Q2)>ψn(t),
where e(Q1, Q2) is a column vector depending on Q1 and Q2. Using this representation, the orthogonal
projection of a given vector ĉ onto the positive polynomial cone K is formalized as the optimization
problem below:

maximize −d
subject to d ≥ ‖ĉ− c‖2

Σ−1 (quadratic cone restriction)

c = e(Q1, Q2) (linear restriction)

Q1, Q2 � 0 (PSD cone restriction)

This is an optimization problem with quadratic cone, linear, and positive semi-definite (PSD) cone
restrictions. This can be solved in the framework of symmetric cone programming. Several public
softwares are available (e.g., SeDuMi by Sturm (1999)).
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