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Introduction

Detection of changes is a problem of discovering time points at which properties of a stochastic
process change. This covers a broad range of real-world problems and has been actively discussed.
The standard statistical approach to this problem is described for example in Csoérgé and Horvath
(1997). The contribution is focused on multiple change point detection in a one-dimensional stochastic
process using sparse parameter estimation from an overparametrized model. Detection of changes has
originally arisen in the context of quality control. Nowadays, we can find wide range of fields where
change point problem is applied, such as epidemiology, medicine (rhythm analysis), ecology, signal
processing etc.

Authors’ approach to change point detection is quite different from the standard statistical
techniques. A stochastic process residing in a bounded interval with changes in the mean is estimated
using dictionary (a family of functions, the so-called atoms, which are overcomplete in the sense of being
nearly linearly dependent) and consisting of Heaviside functions. Among all possible representations
of the process we want to find a sparse one utilizing a significantly reduced number of atoms. This
problem can be solved by ¢1-minimization (see Bruckstein et al. (2009), Chen et. al (1998)). The basis
pursuit algorithm is used to get sparse parameter estimates. Basic properties of this approach were
studied in Neubauer and Vesely (2011) and in Neubauer and Vesely (2010) by simulations. According
to these results, the basis pursuit approach proposes an alternative technique of the change point
detection. In this contribution the authors calculate empirical probability of successful change point
detection as a function depending on the number of change points and the level of standard deviation
of an additive white noise of the stochastic process. The empirical probability was computed by
simulations where locations of change points were chosen randomly from uniform distribution.

Heaviside Dictionary for Change Point Detection

In this paragraph we briefly describe the method based on basis pursuit algorithm(BPA) for
the detection of the change point in the sample path {y;} in one dimensional stochastic process {Y;}.
We assume a deterministic functional model on a bounded interval Z described by the dictionary
G = {G,}jes with atoms G; € L?(T) and with additive white noise e on a suitable finite discrete
mesh 7 C I:
Y=z +e, t €T,

where = € sp({G,}jecs), {et}ter ~ WN(0,02), o > 0, and J is a big finite indexing set. Smoothed
function & = 7. ;&G = G¢ minimizes on 7 (-penalized optimality measure Hly — G¢|? as
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Figure 1: Heaviside atoms with parameters a = 0,b=0and a =0,b= 0.5

follows: A 1
§ = argmingea ()5 [y = GEI* + Allgll, (1€l = > lIG 1€,
JjeJ
where A = 04/2 In (card J) is a smoothing parameter chosen according to the soft-thresholding rule
commonly used in wavelet theory. This choice is natural because one can prove that with any orthonor-
mal basis G = {G}}jes the shrinkage via soft-thresholding produces the same smoothing result &. (see
Bruckstein et al. (2009)). Such approaches are also known as basis pursuit denoising (BPDN).

Solution of this minimization problem with A close to zero may not be sparse enough: we are
searching small F' C J such that & ~ ) jeF ijj is a good approximation. The procedure of BPDN
is described in Neubauer and Vesely (2011).

We build our dictionary from heaviside-shaped atoms on L?(R) derived from a fixed 'mother
function’ via shifting and scaling following the analogy with the construction of wavelet bases.

We construct an oversized shift-scale dictionary G = {Ggyp}acapes derived from the 'mother
function’ by varying the shift parameter a and the scale (width) parameter b between values from big
finite sets A C R and B C R™, respectively (J = A x B), on a bounded interval Z C R spanning the
space H = sp({Gap})acApes, Where

1 for t—a>0b/2,
2(t —a)/b t—al <b/2,b>0,
—1 otherwise.

In the simulations below Z = [0,1], 7 = {t/T'} (typically with mesh size " = 100), A =
{t/T }tT:_tZO (to is a boundary trimming, to = 5 was used in the simulations) and scale b fixed to zero
(B = {0}). Clearly the atoms of such Heaviside dictionary are normalized on Z, i.e. ||Ggpll2 = 1.
Some examples of Heaviside functions are displayed in the figure 1.

Change Point Detection by Basis Pursuit

Neubauer and Vesely (2011) proposed the method of change point detection if there is just one
change point in a one-dimensional stochastic process (or in its sample path). We briefly describe
a given method. We would like to find a change point in a stochastic process

(1) V= [ t=1,2,...,c
K w40+ e t=c+1,...,T,
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where 4,0 # 0,t9 < ¢ < T —tg are unknown parameters and ¢; are independent identically distributed
random variables with zero mean and variance o2. The parameter c indicates the change point in the
process. Using the basis pursuit algorithm we obtain some significant atoms, we calculate correlation
between significant atoms and analyzed process. The shift parameter of the most significant atom or
the atom with the highest correlation is taken as an estimator of the change point c¢. In case of one
change point, the estimator based on highest correlation performed slightly better.

Now let us assume the model with p change points

o+ € t=1,2,...,c1
2) Y= w01+ € t=c1+1,...,c9,
6y + € t=cp+1,....T,
where p,01,...,0, # 0,10 < c1 < --- < ¢p < T — tg are unknown parameters and ¢; are independent

identically distributed random variables with zero mean and variance o2.

We use the method of change point estimation described above for detection of p change points
C1,...,Cp in the model (2). Instead of finding only one significant atom or an atom with the highest
correlation with the process Y; we can identify p significant atoms or atoms with the highest correlation.
The shift parameters of these atoms determine estimators for the change points c,...,c,. Another
possibility is to apply the procedure of one change point detection p-times in sequence. In the first
step we identify one change point in the process Y;, then we subtract such significant atom from the
process (by linear regression)

Y;f = ﬂGO,él + €t,
}/:‘,/ - }/;f - /BGO,éla

and we apply the method to the new process Y/. This sequence is repeated until we get p esti-
mates of change point. The shift parameters of selected atoms are again identifiers of the change
points cy,...,cp.

Simulation Study

For the purpose of performance study of the proposed method of multiple change point detection
we use simulations of the process (2). We put 7' = 100, u = 0, the error terms are independent normally
distributed with zero mean and the standard deviations ¢ = 0.2 and 0.5. Locations of change points
were chosen at random uniformly in the interval [5,95], 0;,(i = 1,...,p), had values 1 or —1 (again
randomly generated). For each number of change points (p = 1,...,15) 500 simulations of the process
(2) were calculated. We applied 4 methods to detect change points:

e the method based on the most significant atoms (according to ¢;-minimization),
e the method based on the significant atoms with highest correlation,

e the iterative method based on the most significant atoms,

e the iterative method based on the significant atom with highest correlation.

We calculate empirical probability of successful change point detection as

number of successful detections

empirical probability = number of simulations

The detection was a success provided that all change points could be correctly identified. The results
are summarized in graphs (see figure 2). The empirical probability of the iterative methods is generally



Int. Statistical Inst.: Proc. 58th World Satistical Congress, 2011, Dublin (Session CPS070) p.6879

Ermpirical probabity of secossiul changs point doss bon Ermpirical probabity of secosisiul changs point dioss boen

&
-]

-]
]

highast comalaben
b |

L=
a

-]
-1
o
in

et Alra higiesl ey

E-]
-

=
-

a
%]

ompsracal probabty
(=3 =
L M = =
ampsrasal probabty

g | cornelaion
Reeatval \ L

o
o

(=]
L]

Recalyo highas! con .

] 5 4 15 ] 5 L] 15
pasniar o chanpoposnis pusnibar o changopoenis

(=]
(=]

Figure 2: Empirical probability of successful change point detection for ¢ = 0.2 and 0.5

higher than the probability of the direct detection methods. We expected that the difference between
two neighbouring atoms is at least 5. In the case of iterative methods we exclude all atoms detected
in preceding iterations.

Conclusion

According to the simulation results the basis pursuit approach proposes a reasonable detection
method of change points in one-dimensional process. In the case of one change point, the method
based on significant atoms with highest correlation with the process yields better results than the
method based on pure #; minimization when the standard deviation of the white noise is large. This
is not valid for more than one change point which can be drawn from the graphs of the empirical
probability of successful change point detection. The iterative methods performed better than the
direct ones. With the increasing number of change points the empirical probability decreases as one
can expect. The standard deviation of an additive white noise of the process also affects the probability
of successful detection. Higher values of the standard deviation cause lower probability of successful
detection.

The change point detection techniques may be useful in a broad range of real-world problems,
for instance in modeling of economical or environmental time series where jumps can occur.
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RESUME (ABSTRACT)

The contribution is focused on multiple change point detection in a one-dimensional stochastic
process by sparse parameter estimation from an overparametrized model. Detection of changes has
originally arisen in the context of quality control. Nowadays, we can find wide range of fields where
change point problem is applied, such as epidemiology, medicine (rhythm analysis), ecology, signal pro-
cessing etc. Standard statistical approach to change point analysis is described, for instance, in Csérgo
and Horvdth (1997). Authors’ approach to change point detection is quite different. A stochastic pro-
cess residing in a bounded interval with changes in the mean is estimated using dictionary (a family of
functions, the so-called atoms, which are overcomplete in the sense of being nearly linearly dependent)
and consisting of Heaviside functions. Among all possible representations of the process we want to
find a sparse one utilizing a significantly reduced number of atoms. This problem can be solved by
01 -minimization (see Bruckstein et al. (2009), Chen et. al (1998)). The basis pursuit algorithm is
used to get sparse parameter estimates. Basic properties of this approach were studied in Neubauer and
Vesely (2011) and in Neubauer and Vesely (2010) by simulations. According to these results, the basis
pursuit approach proposes an alternative technique of the change point detection. In this contribution
the authors calculate empirical probability of successful change point detection as a function depending
on the number of change points and the level of standard deviation of an additive white noise of the
stochastic process. The empirical probability was computed by simulations where locations of change
points were chosen randomly from uniform distribution. Such probability decreases with increasing
number of change points and/or standard deviation of white noise.



