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Introduction

Phase-type (PHT) distributions provide a natural model for a wide range of stochastic processes
where the event of interest is first passage time to a given state or set of states. However, they present
interesting inferential challenges. Whilst both general likelihood and Bayesian approaches have been
developed in the context of distribution fitting, there has been relatively little work on inference where
there is a scientific interpretation of the underlying stochastic process. It is this latter situation which
we address in the current work.

Our work builds on the Markov chain Monte Carlo (MCMC) algorithm developed by Bladt
et al. (2003) in a number of directions. Firstly, in order to facilitate models in which the stochastic
process has some scientifically interesting interpretation the conjugacy properties are shown to hold
when constraints are imposed on the structure of the underlying Markov process, both in terms of
prohibiting certain state transitions and of fixing certain rate parameters as being equal. The existing
algorithm is also shown to naturally incorporate right-censored observations as can be common in real
world temporal data.

These modifications can lead to computational issues in some situations and alleviating these in
a wide class of situations is the second contribution of this work. The original algorithm is adapted
to improve the step involving simulation of the Markov jump process underlying the PHT, which is
required for each observation.

This paper provides a high-level summary of our work to this end.

Phase-type distributions

Consider a continuous-time Markov chain on a finite discrete state space of n+ 1 states, one of
these states being absorbing. With a possible reordering of states, the generator of the Markov chain
can be expressed as:

T =

(
S s
0 0

)

where S = (Sij) is the matrix of transition rates between non-absorbing states i and j for i 6= j and
i, j ∈ {1, . . . , n}, whilst s = (s1, . . . , sn)T is the vector of transition rates from state i to the absorbing
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state and 0 is the row vector of n zeros.
A (continuous) phase-type distribution (PHT) is defined to be the distribution of the time to

entering the absorbing state of a continuous-time Markov process with generator T and vector of
initial state probabilities π = (π1, . . . , πn)T.

The distribution and density can be expressed as:

Y ∼ PHT(π,T) =⇒
{
FY (y) = 1− πT exp{yS}e
fY (y) = πT exp{yS}s

where e is a vector of 1’s of the appropriate dimension; y ∈ [0,∞) is the time to absorption; and
exp{yS} is the matrix exponential.

Here, we will refer to the stochastic process underlying a PHT random variable Y by Y (t),
representing the state of the process at time t. Thus, the process starts in state Y (0), and given a
realisation Yi = yi of the PHT random variable we know that for the underlying process Y (yi) = n+1.

A good reference for continuous time Markov chains is Grimmett & Stirzaker (2001). Phase-
type distributions were introduced in Neuts (1975) and an excellent survey of much of the theory is
presented by Asmussen (2000).

Bayesian inference

Bladt et al. (2003) provide a fully Bayesian framework for inference by constructing priors which
are conjugate for the unobserved stochastic process. The unobserved stochastic process is simulated
as part of a Metropolis-Hastings within Gibbs step. The focus within their work is very much on
distribution fitting, with numerous examples of Phase-type approximations to positively supported
theoretical densities.

We choose to focus on a Bayesian technique, since it enables the use of dispersed prior densities
to inform the model and combat the non-identifiability issue that Phase-type distributions suffer in
a frequentist inference context. Since our objective is learning something about the real parameters
of the process and not distribution fitting, vague priors can guide the inference away from irrelevant
local maxima.

To summarise, the MCMC algorithm developed by Bladt et al. (2003): if the full stochastic
process leading to absorption is observed, then π ∼ Dirichlet and Sij , si ∼ Gamma are conjugate
priors. A Metropolis-Hastings (MH) sampler is used to simulate the unobserved process (since here
data consist only of absorption time). The MH proposal is a draw from p(path · |π,S, Y ≥ yi)
performed by rejection sampling. The acceptance ratio then ensures that after a sufficient number of
rejection samples one is sampling from p(path · |π,S, Y = yi) after truncating to yi and inserting an
absorbing move. This full sample chain from the unobserved process in the MH step gives conjugacy
for the Gibbs step. Thus, the algorithm iterates between drawing parameter values and simulating
the unobserved processes associated with each absorption time:

p(π,S | paths ·,y)

p(paths · | π,S,y)

We now consider extensions to the methodology.
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Censored data

Phase-type distributions measure time to an event of interest and it is not uncommon for such
temporal data in scientific experiments to have right censoring. This can, for example, be the case
when the event of interest has not occurred by the end of measurement or when some other independent
event occurs which masks the event of interest such as so-called ‘competing risks’ (Prentice et al. 1978).

Such right-censored observations can be dealt with quite simply within the existing algorithm.
The data will now consist of some actual and some censored observations, y = {y1, . . . , ym, y

c
m+1, . . . , y

c
n},

where a superscript ‘c’ denotes right-censoring. Now, when the MH step is performed, it should be
used as normal for {y1, . . . , ym}, but for {yc

m+1, . . . , y
c
n} it should cease immediately after producing

a sample from the rejection sampling. This allows us to effectively incorporate the fact that the unit
survived to this time in the likelihood through the Metropolis-Hastings step.

Special structures

As it stands, the algorithm assumes a rate matrix for the phase-type distribution which is
completely dense and where every rate can vary independently in the inferential process. However,
when the objective is scientific modelling of a process about which there is some known structure or
theory this may not be a desirable property. In particular, certain state transitions of the process
being modelled may make no physical sense and so their entry must be fixed at zero in the generator
of the Markov chain. Additionally, it may be that certain state transitions should (in an idealised
modelling sense) have identical parameter values. These desirable modelling assumptions moreover
allow a significant reduction in the dimension of the parameter space.

Constraining a parameter to zero is a straight-forward procedure as was the case for the EM-
algorithm of Asmussen et al. (1996). The parameter is simply fixed at zero when simulating chains in
the MH step and no new values are simulated in the Gibbs step: this solves the problem because we
are ceasing to consider this entry of T as a parameter, excluding it from all inferential procedures.

The second matter – that of constrained equality for certain parameters – requires examination
of the posterior distribution which, when using the conjugate priors above and with the full data (full
Markov processes, simulated by Metropolis-Hastings here), can be written as (Bladt et al. 2003):

p(π,T |y) ∝ φ(π,T)p(y |π,T)

=

 p∏
i=1

πβi−1
i

p∏
i=1

sνi0−1
i e−siζi

p∏
i=1

p∏
j=1

j 6=i

S
νij−1
ij e−Sijζi



×

 p∏
i=1

πBi
i

p∏
i=1

sNi0
i e−siZi

p∏
i=1

p∏
j=1

j 6=i

S
Nij

ij e−SijZi



=
p∏
i=1

πBi+βi−1
i

p∏
i=1

sNi0+νi0−1
i e−si(ζi+Zi)

p∏
i=1

p∏
j=1

j 6=i

S
Nij+νij−1
ij e−Sij(Zi+ζi)

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS027) p.6412



Thus, where we constrain parameters in different parts of the generator S to be equal, it is possible
to ensure the resultant full conditional posteriors still keep the property of conjugacy. However, to do
so requires a reduction of the flexibility in specification of the prior distributions. When every entry
in the rate matrix is a freely varying parameter, we have the prior specified as Sij ∼ Gamma(νij , ζi)
and si ∼ Gamma(νi0, ζi). Clearly, if we constrain certain Sij to be equal, so that Sij = λ for all pairs
(i, j) ∈ A then we must have νij = νλ ∀ (i, j) ∈ A and ζi = ζλ ∀ (i, ·) ∈ A. The restriction on ν·· is of
no consequence, but the restriction on ζ· is important since ζi is a common prior parameter for all Si·
and si

In effect, if a constraint crosses rows in a matrix then all parameters in such rows will be
constrained to sharing a common parameter ζ· The restriction is not too grave given that there is
full freedom in the assignment of νij still, but it may prompt even more careful consideration of prior
parameter specification.

Computational tractability

The key focus of our work relates to the performance of the algorithm for practical use in
modelling. Whilst the original unmodified algorithm had one major source of performance related
issues, the expanded modelling options introduced in the previous section can, in certain circumstances,
lead to additional severe degradation in the computational performance of the algorithm.
Issue I [Exploring parameter space]: It is common in scientific studies which call upon the
Bayesian method of inference to desire use of a relatively diffuse prior density. Additionally, it is
desirable for an MCMC sampling scheme to explore the parameter space well (ie the space of vectors
and matricies (π,S) well here). However, the rejection sampling prescription of the MH step can
encounter problems if this is the case.

This can best be seen by considering the acceptance probability for the rejection sampler. Since
the rejection sampling is simply forward simulation of an absorbing continuous-time Markov chain,
rejecting sample paths that do not reach the observation time yi before absorbing, the rejection
probability is simply P (Y < yi |π,S). Clearly the density of number of trials required to draw a
suitably long simulated chain is Geometric, with parameter p = πT exp{yiS}e

So, algorithm 1 will from time-to-time be expected to simulate chains which are highly im-
probable under the given parameter values. Thus, the rejection step of algorithm 1 can completely
stall because it is so unlikely that any chain will be produced which absorbs so far into the tail. For
example,

P (Y > yi |π,S) = 0.001 =⇒ E(Rej Samp iter) = 1000, 95% CI = [25, 3687]
P (Y > yi |π,S) = 10−6 =⇒ E(Rej Samp iter) = 1000000, 95% CI = [25317, 3688877]

Thus, chains are being wastefully sampled, potentially millions of times, to find one chain absorbing
beyond yi. It is not hard to see that for diffuse priors the above problem will effectively stall the
algorithm, particularly since this could conceivably arise for all observations for a given data set.
Issue II [Zero constraints for absorbing moves]: Once we admit the possibility of constraining
some of the rates of moves to absorption, si, to zero, there is the possibility that truncating a rejection
sampled chain will produce an impossible move. For example, if sj = 0 is a constraint and our rejection
sample is such that Y (yi) = j, then attempting to truncate and insert a move j → n+1 will be invalid.
Of course, this is dealt with automatically insofar the MH acceptance ratio has probability zero of
accepting such a chain.
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However, it can cause serious computational issues when the states most commonly occupied
by the process are those from which absorbing moves are disallowed. A simple example we have en-
countered when modelling a repairable redundant electronic system comprising of reliable components
exhibited such behaviour. Here, a move 1→ absorption is disallowed as it represents the probability
zero event of precisely identical failure times for two independent units:

State, j Meaning P (Y (yi) = j)
1 both units working 0.9986
2 1 failed, 2 working 0.0007
3 1 working, 2 failed 0.0007

This leads us to conclude that there will be a large number of unusable chain paths produced
by rejection sampling under the extended methodology which enables disallowed state moves. In this
simple example:

E(no. unusable MH results) = 1429 and 95% CI = [36, 5267]

Issues I and II can compound and we have often observed the algorithm effectively stalling for days
of computation time on a single iteration.

Explicit conditional sampling

We propose replacing the Metropolis-Hastings step entirely by constructing an algorithm which
samples a chain explicitly conditional on the time an absorbing move occurs.

The new algorithm produces a sample chain from p(path · |π,S, Y = y) as follows (we suppress
π,S for readability):

1. Choose the starting state j from the discrete distribution defined by π and set the current ‘clock
time’ t = 0.

2. Decide if an additional state move occurs before absorption or whether the next move is the
absorbing move. To do this, draw U ∼ Unif(0, 1) and remain in j to absorption if

U < P (δ > y − t ∩ j → n+ 1 |Y (t) = j,π,S, Y = y) =
eSjj(y−t)sj

1T
j e

S(y−t)s

where 1j hereon denotes a vector with 1 in the jth slot and 0 elsewhere. Otherwise, continue to
step 3:

3. Here, a state move must occur between t and absorption at y. Select the time of the next
jump according to the density (here pj· are the jump probabilities from j excluding absorption,

Sji

−Sjj−sj
):

p(δ = d | δ < (y − t), Y (t) = j,π,S, Y = y) ∝ −SjjeSjjd pT
j·e

S(y−t−d)s

4. The non-absorbing move is then chosen from the probability mass function (j 6= i):

P (j → i | δ = d < (y − t), Y (t) = j,π,S, Y = y) ∝ Sji 1T
i e

S(y−t−d)s
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5. Update j = i and t = t+ d, then loop to 2.

The calculations in steps 2 and 4 are routine save for the usual complication associated with
computing matrix exponentials. Step 3 is somewhat more involved, though it is possible to attack
the distribution function for the jump time d analytically (numerical stability is improved if the rate
matrix is eigendecomposed as S = QΛQ−1)

F (d) =

∫ d

0
−SjjeSjjx pT

j·e
S(y−t−x)s dx∫ y−t

0
−SjjeSjjx pT

j·e
S(y−t−x)s dx

=
−SjjpT

j·Qe
Λ(y−t)(−SjjI−Λ)−1

{
I− e−d(−SjjI−Λ)

}
Q−1s

−SjjpT
j·QeΛ(y−t)(−SjjI−Λ)−1

{
I− e−d(y−t)(−SjjI−Λ)

}
Q−1s

Note that much of the above (including eigendecomposition) is unchanged on repeated evaluation
for different d, so the overhead is much less than it may at first seem. Random variates can be generated
from this distribution using a numerical root solver to invert a Uniform(0,1) random number.

We also developed this conditioning instead explicitly on Yi ≥ yi for censored data.

Conclusions and future work

The methodological changes enable application of Bayesian inference for phase-type models to a
wider class of problems than was previously possible, including those where there is a physical meaning
to the underlying stochastic process. The replacement of the Metropolis-Hastings step also reduces
the number of situations in which the MCMC scheme will stall during sampling. Work is currently
focused on the most efficient techniques for sampling step 3 in the new algorithm.
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