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1 Introduction

The Swiss Federal Office of Statistics (SFSO) uses a coordinated sampling system developed in Qualité

(2009) that extends the method proposed in Brewer et al. (1972). Each transversal sample selected

through this system stems from a Poisson sampling design. This procedure, with its inherent size-

variability, calls for updated planification methods of target sample sizes within domains, to replace

allocation optimization techniques that were used for stratified designs. One particular aspect, intro-

duced with these Poisson designs, and that did not exist with the stratified sampling designs that were

commonly used before the introduction of the coordination system, is the risk of selecting a sample

that is well below the expected size in some domains. This risk is also present when non-response

is modeled as a second-phase Bernoulli sampling within domains. Another problem for which we

give our best yet found solution, is the unit-level selection dependence required in some surveys (e.g.

surveys where at most one selection may occur in any household), and unobtainable through a sim-

ple use of our coordinated sampling system. In order to satisfy these requirements, we propose to

use coordinated selection as one phase in a multi-stage sampling design. The computation of correct

(conditional-)inclusion probabilities at each phase is however non-trivial in the general case.

2 Coordinated Poisson Sampling

In Qualité (2009), we proposed a coordinated sampling method that allows to obtain, a minimal or

maximal correlation between selection indicators Itk of unit k in different samples st for all k in a

population U . It is a natural extension of Brewer et al. (1972)’s sampling design for two surveys.

The method of Brewer et al. (1972) consists in generating a permanent uniform random number uk
in [0, 1], and defining selection zones as subsets of [0, 1] for each unit k in such a way that,

1. the length of the selection zone for sample s1 (resp. s2) is equal to the desired inclusion proba-

bility π1k (resp. π2k),

2. the overlap between selection zones is minimal if negative coordination is desired and maximal

if positive coordination is desired.

For positive coordination, it amounts to define the selection zone of k in s1 as [0, π1k) and for the

selection of k in s2 as [0, π2k). Thus [0, 1] is effectively split into three intervals as in Figure 1. Each of

these intervals corresponds to a possible value of the couple (I1k , I
2
k).

Figure 1: positive coordination when π2k ≤ π1k
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For negative coordination the selection zones in s1 and s2 are typically equal respectively to

[0, π1k) and [π1k, π
1
k + π2k), if the sum of inclusion probabilities does not exceed 1, as in Figure 2. In the

Figure 2: negative coordination when π1k + π2k ≤ 1
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general case of negative coordination, [0, 1] is split into three intervals, the boundaries of which are

given by 0, π1k, (π1k + π2k) mod1 and 1.

We extend this idea to the selection of any number of samples by defining recursively for any

new survey a selection zone for each unit. The principle is easily understood on an example: say that,

after s1 and s2 have been selected with positive coordination, and that the situation is similar to that

of Figure 1. Suppose that one wants to select a third sample s3 positively coordinated with s2 but

negatively coordinated with s1, and that, for example, π3k > π2k. Then, the selection zone for s3 will

contain the selection zone for s2 and an other bit of [0, 1] that respects the desired coordination rules

in the best possible way. In this case, typically, we will add [π1k, π
1
k + π3k − π2k) to obtain the selection

zone of s3, as in Figure 3.

Figure 3: Coordination of a third sample
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More formally, at time t and for a unit k, the interval [0, 1] is split into a collection of at most

t + 1 sub-intervals. Each of these sub-intervals is associated to a possible history of selections of

unit k. The addition of a new survey st+1 is obtained by including into the selection zone for st+1

the intervals that correspond to the most desirable history of selections, and usually splitting one of

these sub-intervals into two parts so that the total length of the selection zone is equal to the desired

inclusion probability πt+1
k . A total order on the sub-intervals is necessary to make this operation. The

one we use is obtained by asking of the user to specify the type of coordination that he would like to

have with each previous survey, and to give an order of priority for these coordinations.

The transversal sampling designs are Poisson sampling designs, and hence are random size. If

coordinations are all negative and respect the order of selection in time, the longitudinal design for

all units is systematic, which is arguably (see for example Nedyalkova et al., 2009) the best design

regarding burden repartition.

3 Developments and real life adaptation

The method presented in section 2 is flexible enough to draw all types of samples currently used in

the SFSO: one occasion surveys, panels updated every other years and rotating panels. The latest

are in fact selected as collections of subsamples. For example, if the expected rotation rate is 20%,

we select five subsamples that constitute the initial sample. The following year, five other subsamples
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are selected with coordination rules that ensure that four out of the five initial samples are simply

updated for births and deaths in the population, while the fifth is replaced by a new and negatively

coordinated sample. Births and deaths in the population do not jeopardize the system as units are

treated independently, and even mergers and splits can be dealt with by transmitting the history of

one former unit to a new one when it seems to make sense.

This sampling program has been used in the SFSO since October 2009 for business surveys, and

since November 2010 for population surveys. It has admittedly a modest impact on business surveys

burden repartition. Indeed, in business surveys, most units are either in “take-all strata” or have very

small inclusion probabilities. In both cases, sample coordination does not bring much compared to

independent selections. Still, it provides a simple method with solid theoretical foundations to update

panel samples, and to draw rotating panels in a dynamic population, as well as the assurance that

we did the best we could to avoid unnecessarily frequent selections of the same units. For population

surveys, the need for a coordination method has been made pregnant by the introduction of an annual

“structural survey” with a sampling fraction close to 7%.

Up to now, two limitations of the method have had to be accounted for. Both are related to

the fact that transversal designs are Poisson designs. The simplicity of this sampling design is the

reason we are able to implement a flexible coordination sampling program, but it does not completely

suit every needs of the statistician who is only concerned with his sole upcoming one-occasion survey.

One aspect of Poisson sampling that may be problematic is its random size. As we see in section 3.1,

this has little to no effect on the expected accuracy of the sampling strategy, but the risk to select a

sample smaller than anticipated exists, and some measures have to be taken to account for that risk.

The other problematic aspect is that, with Poisson sampling, the selection of a unit is independent

from the selection of another one. However, for business surveys as well as for population surveys,

two kinds of units are of interest: companies and establishments in the first case, individuals and

households in the second. In the case of population surveys, the usual procedure at the SFSO before

a population register became available, was to select phone numbers in an available sampling frame,

followed by a selection of one respondent unit in households corresponding to selected phone numbers.

We discuss in section 3.2 how we managed to select samples of one unit per household through our

sampling system.

3.1 Planification with Poisson sampling

When we introduced our coordination system, with its Poisson transversal designs, the concern most

frequently expressed by our partners was with the loss of precision anticipated due to its random size.

And it is true that, for some variables strongly correlated to the inclusion probabilities, a random

sampling design used in conjunction with the Horvitz-Thompson estimator (Horvitz & Thompson,

1952) has higher variance than a fixed size design also used with the Horvitz-Thompson estimator.

However, in practice, it is never the Horvitz-Thompson estimator that is used for estimation, but

rather the Hájek estimator (Hájek, 1971) or better a calibrated estimator (see Deville & Särndal,

1992). Then, if the inclusion probabilities are among the calibration variables, sample size randomness

is almost entirely irrelevant for the precision of the sampling strategy, as is shown in the following

widely applicable example.

Consider a population of size N , an interest variable y with corrected variance S2
y and the

simplest possible example of Bernoulli sampling used with Hájek’s estimator, noted ŶHj(s), and simple

random sampling without replacement, with the same inclusion probabilities p = n/N , used with

Horvitz-Thompson’s estimator noted ŶHT (s) (see for example Särndal et al., 1992). Conditional on
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size n(s) of a sample and provided that n(s) 6= 0, we get that

(1) var
(
ŶHj |n(s)

)
= N2

(
1− n(s)

N

)
S2
y

n(s)
, and E

(
ŶHj |n(s)

)
= Y,

where Y is the true population total of y. In order to carry out computations, we need to extend

ŶHj(s) to the null sample and choose a value ŶHj(∅). Estimator ŶHj(s)’s bias is equal to

(2) B(ŶHj) = (1− p)N
(
ŶHj(∅)− Y

)
,

and is of the order of exp(−n) if N is large enough. In most applications, exp(−n)� 1/n and we will

neglect this bias. In order to simplify the variance computation, suppose that ŶHj(∅) = Y . Then,

(3) var(ŶHj) = var
{

E
[
ŶHj |n(s)

]}
+ E

{
var
[
ŶHj |n(s)

]}
,

simplifies to

var(ŶHj) = E
{

var
[
ŶHj |n(s)

]}
,

=

N∑
m=1

N2
(

1− m

N

) S2
y

m

(
N

m

)
pm(1− p)N−m,

= N2S2
y

[
1− (1− p)N

] [ 1

1− (1− p)N
N∑

m=1

1

m

(
N

m

)
pm(1− p)N−m − 1

N

]
.

Approximations for the summation in the last expression are available in Thionet (1963); Marciniak

& Wesolowski (1999); Grab & Savage (1954); David & Johnson (1956). They all lead to conclude that

(4) var(ŶHj) = var(ŶHT ) +O
(
n−2

)
.

The real problem is that, in small domains, the selected sample can have a smaller size than

what is deemed acceptable, even before the non-response phase. Variances conditional to size will then

be uncomfortably large. In order to limit that risk, we may choose to modify the initial allocation

of the sample between domains and increase the sampling size in certain domains. When inclusion

probabilities are equal within domains, we can easily compute the probability of obtaining a sample

size below a given value P (n(s) < nmin), that is a function of the sampling rate. We then invert this

function and determine sampling fractions such that P (n(s) < nmin) = α where α is the accepted

risk of obtaining a sample that is too small. This leads us to modify our allocation algorithms, and

accept a result that is less than optimal for the estimation of a total on the whole population. Also,

when there is a large number of such small domains, it becomes very costly, in terms of precision or of

expected sample size, to use a parameter α small enough so that the probability of having one or more

unwanted domain sample sizes remains small. While this is a serious problem, it is in fact inherent

to all sampling operations with non-response when one models the non-response phase by a Bernoulli

or multinomial sampling design. Cost added by the random size Poisson selection is then relatively

small compared to that of controlling risks of an unlucky non-response phase result.

3.2 Introducing unit-level dependence

In order to limit the survey burden within households, and hopefully obtain better response rates,

it is common practice in population surveys not to select more than one individual per household.

Most SFSO samples were, up to now, designed that way. Before 2010, the only available and practical

sampling frame was a phone number register. Selecting one unit per phone number after having listed

all the members of the contacted household also allowed to precisely control the sample size. The new
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population register, however, is obtained by collecting population lists of all municipalities (for all

people living in Switzerland, it is mandatory to register with their commune of residence authorities,

a foreign workers office or an immigration office). The first objective of this administrative process

is to keep track of individuals, not of households. Thus it was considered safer to build a sampling

frame of individuals, with their social security numbers as identifiers than to build a sampling frame

of households. However, for most people a household number is also available, and the inclusion of

this number will become mandatory by the end of 2013.

While samples of one unit per household cannot be obtained directly with our coordinated

sampling system, a two-phase operation allows to select such samples. Computations are relatively easy

when inclusion probabilities within any household are equal or null, and become complex otherwise.

Also, when such a sample has to be selected on multiple different occasions while taking care of not

selecting units in households already surveyed, the evolution of households composition makes the

operation computationally difficult. This is the case of one SFSO survey for which a third of the

sample was selected on the register created at the end of 2010 and the two other thirds are to be

selected on the March 2011 and June 2011 registers.

We adopted the following procedure:

1. first a sample is selected through the coordination algorithm, with a set of selection probabilities

that has to be computed so as to obtain the correct final inclusion probabilities,

2. then, in households with multiple selections, one of the selected units is kept at random and the

others are eliminated from the sample,

3. if applicable, selections in households that were part of previous samples are filtered.

With this procedure, some selections are erroneously recorded in the coordination system, as some units

selected by it will not be part of the survey. But the inclusion probabilities used at the coordinated

sampling phase are close to the true final inclusion probabilities, except in very large households, and

so, the system retains an acceptable performance.

When only steps 1 and 2 have to be performed, parameters pk of the first phase selection of

units k in a household M of size mk can be computed as functions of the final inclusion probabilities

πk by noting that

(5) πk =
1

mk
[1− (1− pk)mk ] .

We then get that we need to use selection probabilities pk = 1− (1−mkπk)
1

mk . In the general case of

unequal inclusion probabilities, we should solve equations (6) in pk, k ∈M:

(6) πk = pk

mk−1∑
n=0

∑
i1 6=···6=in 6=k∈M

1

n+ 1

∏
j∈1,...,n

pij
∏

`/∈i1,...,in,k

(1− p`) , k ∈M.

Unfortunately, there is usually no closed form solution for these equations. Numerical procedures

seem to work on some toy examples, but it is unsure whether they are fast and convenient enough to

be used on a population of about eight million units.

If step 3 has to be performed, an equation similar to 6 is relatively easy to obtain. However,

it depends on selection probabilities of units of the household at former sampling occasions. If the

composition of the household has changed, there is a strong possibility that these probabilities are

not equal among all members of the household. In that case, we do not have closed form solutions to

select the sample with prescribed inclusion probabilities. Luckily enough the household structure is

not evolving so quickly. Indeed, when we compare the September and December 2010 registers, we

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS046) p.5045



observe that this mixing of inclusion probabilities within households has occurred for less than 2%

of the households. For the other 98% we are able to select a sample that exactly respects planified

inclusion probabilities.
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RÉSUMÉ

L’Office Fédéral de la Statistique (Suisse), utilise un système de sélection d’enquêtes coordonnées

développé par Qualité (2009). Il s’agit d’une extension de la méthode de Brewer et al. (1972). au

cas de plus de deux enquêtes. Chaque échantillon transversal sélectionné avec ce système provient

d’un plan de Poisson. La variabilité de la taille des échantillons qui en découle nécessite de nouvelles

procédures d’allocation des tailles d’échantillons visées dans des domaines pour remplacer celles jusque

là utilisées pour des plans stratifiés. Un problème particulier introduit avec ces plans de Poisson, et

qui n’était pas présent avec les plans stratifiés de taille fixe, est le risque de tirer un échantillon dont

la taille est bien en dessous de ce qui avait été visé dans certains domaines. Ce risque est en fait

toujours présent lorsque la non-réponse est considérée comme une deuxième phase de sondage par un

plan bernoullien dans des domaines. Un autre problème pour lequel nous présentons notre solution

actuelle est l’adaptation du système aux enquêtes pour lesquelles une dépendance dans la sélection

des unités est exigée (par exemple pour les enquêtes où l’on ne veut pas sélectionner plus d’une unité

par ménage). Ces enquêtes ne peuvent être directement implémentées avec notre système, mais nous

montrons comment nous l’utilisons comme une des phases de tirage dans un plan en plusieurs phases

qui satisfait les contraintes voulues. Le calcul des probabilités d’inclusion conditionnelles à chaque

phase pour obtenir les probabilités finales voulues est cependant en général non trivial.
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