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General stuttering Beta(p, q) Cantor-like random sets
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Abstract. Random damage — deletion of (Xi.2, X2:2) from [0,1] — followed by random repair,
meaning the union of (Y1.2, Ya.2) to the damaged set, where X andY are independent random variables
with support [0,1], are used at each step of the iterative construction of Cantor-like random sets. The
Hausdorff dimension is computed under various randomness patterns that represent various degrees
of redundancy, namely using Beta and extension of beta random variables to model either damage or
repair, or both damage and repair.
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1 Introduction

Redundancy is an important asset in the survival of complex biological systems, and in the reliability
and quality control of industrial systems. For instance, in the recovery of information in damaged
hardware, information can be extracted both from the damaged and the undamaged tracks, and in
the next step redundancy is cleared up — an operation that mirrors the mathematical operation of set
union, in the sense that it discards repetitions. Random repair models brought in substantial progress
in Probability Theory, cf. v.g. the chapters “Doubling with Repair”, and “Mathematical Theory of
Reliability Growth” in [4]. In here, we use random repair at each step of the iterative procedure used
to construct a Cantor-like set, allowing for redundancy in the sense that repair can operate upon
non-damaged zones.

A huge class of deterministic and of random Cantor-like sets can be constructed using several
iterative procedures (Falconer, [3]; Pesin and Weiss, [5]). In the most common constructions, some
part of the set from the former iteration is removed at each step. Pestana and Aleixo [7] introduced
a stuttering procedure, in which at each step deletion (damage) is followed by partial random recon-
struction (repair), working out in detail the Hausdorff dimension of the limiting fractal for several
combinations of deterministic, uniform random and Beta(2,2) random deletion/reconstruction. Here,
random deletion and random repair mean the removal of a random segment and the union of a ran-
dom segment, respectively, independent of each other, determined by the order statistics of a random
sample of size 2 taken from specified parent populations. Formally, a stuttering Cantor-like random
set is defined as follows:
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e Let Fy =[0,1].
e Construction of Fy:

1. (Damaging stage) Generate two random points X; and Xo, where the parent random
variable X has support S = [0, 1] and delete from [0, 1] the set (X1.2, Xo.2).

2. (Repair stage) Generate two random points Y7 and Y5 independent from (Xi, X2), where
the parent random variable Y has support S = [0, 1].

Fy = [Fo — (X1:2, X2:2)] U (Y12, Ya2) .

A simple example, using uniform damage and repair:

If XLV ~ Uniform(0,1), as (X1, Xa,,V1,Y2) 2(Uy, Us, Us, Uy) where the Uy, k= 1,...,4 are

independent replica of the standard uniform random variable, and there are 4! = 24 possible
reorderings to consider when dealing with order statistics, it is easily established that random
~ 1 2
set F is a mixture of Ny = { 1 o 1 random variables (some of which are degenerate):
6 3 6
N1
= U S;1 or, more explicitly,
i=1
[07 ]_} if Yl;z < X1;2 and YQ:Q > XQ:Q (Wlth probablhty %) (a)
[0, X1:2] U [X2:2,1] if Ya.0 < Xy:0 or Y12 > Xoio (with probability §) (b)
F = [0, Ya.0] U [Xa.0,1] if ¥1:0 < Xq:2 < Ya.0 < Xo:o (with probability ) (c)
[0, X1:2] U [Y1:27 ].] if X0 < Y19 < Xoon < Yoo (Wlth probability %) (d)
[0, X1:2] U [Y1.2, Ya:2] U [X2:2,1] if X120 < V1.2 < Yo < Xa2 (with probability §) (e)

e Fj results from applying the above “stuttering” procedure to each segment S;;_1 of Fj_q,
k=2,3,...: in each segment S; 1 in Fj_

1. (Damaging stage) Generate two random points X.;,—1, X2.; -1, and delete the middle
random segment (X1.2.; x—1, X2:2:45—1) from the corresponding segment S; ;1 in Fj_1;

2. (Repair stage) Generate two random points Yi.; x—1 , Y2.; 4—1, independent from X ; 1,
X2.i k-1, and perform the union of the “damaged set” obtained in the previous stage with

(Yi:2,i k-1, Y2:2,4 k—1)-

Fe =[S k-1 — (X125i k-1, X2:2:56-1)] U (Y1201, Y2:2;5,6—1) } » is what results from this “stut-
i
~ Nk_l ~
tering random repair”. So, F}, is the union of Ny = Z Ny of a random number of independent
j=1
replicas of the random variable N7. In other words, Fj, is the union of a random number of mix-
Ng
tures of random variables F, “similar” (up to scaling) to F} as exhibited above, Fj, = U S -
i=1
o
o F = ﬂ Fy. is thus the stuttering Cantor-like random set obtained by uniform damage counter-

k=1
acted by uniform repair.
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2 Random repair and Hausdorff dimension

Observe also that in terms of the independent replica Uy —~ Beta(1,1), k =1,...,4, the expressions
(b), (c), (d) and (e) are

(b) = {[0, Usa] U [Usia, 1]} U{[0, Ur:a] U [Uzia, 1}
(€) = [0, Us:a] U [Us.a, 1,

(d) = [0, Ur:a] U [Uz:a, 1],

(€) = [0, Ur:4] U [Uza, Usia] U [Usea, 1],

a useful representation when the goal is to compute expectations, since Us.4 41 Us.4 —~ Beta(3,2)
and 1—Uy.4 4 Ui 4 Us.q—Us.q4 —~ Beta(1,4). Hence, in view of the self-similarity in distribution in the
successive stages, the Hausdorff dimension s of the fractal F is the exponent s such that Zf\lll E[S}]
expands to the original size 1 of Fj, i.e., the solution s ~ 0.669783 of

1 8 28

-+ + =1

6 (s+3)(s+4) (s+1)(s+2)(s+3)(s+4)

In Pestana et al. [6] it has been shown that the Hausdorff dimension of a Cantor-like random

fractal obtained by the iterative removal of a middle random set (in the precise sense that its endpoints
were the order statistics of two uniform points in the segments of the previous iteration) — hence with
no repair stage — is approximately 0.561553. Hence a counteracting random repair raises by almost
20% the Hausdorff dimension of the limiting fractal.

Pestana et al. [6] and Rocha et al. [8] have also computed the Hausdorff dimension of Cantor-like
random sets generated using order statistics of Beta(p, q) distributions. In fact, the family of beta
distributions has a diversity of forms appropriate to model very diverse patterns of randomness in (0, 1)
— symmetric if p = ¢, U-shaped if p, ¢ € (0,1), uniform if p = ¢ = 1, J-shaped if one of the parameters
is 1 and de other greater than 1, unimodal if p,q > 1. It is therefore interesting to investigate the
value of the Hausdorff dimension for different kinds of stuttering Cantor-like random sets, constructed
by several combinations of damage and repair methodologies. In Table 1 we present partial results
for some damage/repair combinations of the parameters p and ¢ when damage is deterministic in the
sense that it is determined by the expectations of order statistics.

In Table 1 we use deterministic damage, i.e. at each step the segments removed have as extreme
points the expected values of the minimum and the maximum of a random sample of size 2 of a
truncated Beta(p,q) on (ajk—_1,b;x—1), where the support (a; x—1,b;x—1) is in each case the segment
Si k—1 obtained in the former step. The increase of the Hausdorff dimension over the dimension of the
corresponding damage/non repair fractals, as shown in Table 2, is striking.

Results are of course much less impressive when the random repair chosen doesn’t mach the
damage infliged, for instance when damage is Beta(1,2) and the repair is Beta(2,1), an expected
consequence of the intersection of the expected random middle intervals determined by the order
statistics used in the damage and in the repair phases being much smaller.

In Table 3 we use random damage and random repair, using the minimum and the maximum of
random samples of size 2 from Beta(pi,q1) in the damage phase and from Beta(ps,q2) in the repair
phase. Observe that the Hausdorff dimension decreases under randomness in the damage stage. Once
again, compare with the corresponding Hausdorff dimension without repair stage, shown in Table 4.

Computations for small integer values p and ¢ are cumbersome but feasible (in Table 3 we
register the “exact” values for the cases p = ¢ = 1 and p = ¢ = 2 both in the damage and in the
repair phases), but this is indeed a situation where Monte Carlo methods easily provide satisfactory
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Table 1: Hausdorff dimension of some stuttering Cantor-like random sets, damage using the expected

minimum and maximum of two Beta(pi, q1) order statistics, and Beta(ps, ¢2) minimum and maximum

random repair.

Random Repair
Expected
Extremes | (1,3) | (1,1) | (1,2) | (1,3) | (21) | (22) | (23) | (31) | (3,2) | (3,3)
Damage
(3. %) 0.6772 | 0.6774 | 0.6772 | 0.6751 | 0.6772 | 0.6775 | 0.6764 | 0.6750 | 0.677 | 0.6770
(1,1) 0.7141 | 0.7406 | 0.7216 | 0.6897 | 0.7221 | 0.7639 | 0.7529 | 0.6890 | 0.7521 | 0.7737
(1,2) 0.7313 | 0.7463 | 0.7720 | 0.7620 | 0.7039 | 0.7511 | 0.7813 | 0.6824 | 0.7125 | 0.7473
(1,3) 0.7404 | 0.7448 | 0.7805 | 0.7898 | 0.7081 | 0.7372 | 0.7677 | 0.6943 | 0.7080 | 0.7280
(2,1) 0.7313 | 0.7465 | 0.7042 | 0.6823 | 0.7709 | 0.7511 | 0.7122 | 0.7636 | 0.7806 | 0.7475
(2,2) 0.7582 | 0.7791 | 0.7664 | 0.7415 | 0.7654 | 0.7986 | 0.7898 | 0.7419 | 0.7895 | 0.8082
(2,3) 0.7710 | 0.7871 | 0.7953 | 0.7793 | 0.7600 | 0.8003 | 0.8144 | 0.7405 | 0.7739 | 0.8049
(3,1) 0.7401 | 0.7450 | 0.7077 | 0.6943 | 0.7808 | 0.7380 | 0.7083 | 0.7901 | 0.7674 | 0.7282
(3,2) 0.7707 | 0.7878 | 0.7609 | 0.7406 | 0.7948 | 0.7996 | 0.7734 | 0.7796 | 0.8148 | 0.8050
(3,3) 0.7851 | 0.8030 | 0.7914 | 0.7725 | 0.7909 | 0.8199 | 0.8123 | 0.7725 | 0.8121 | 0.8286

Table 2: Hausdorff dimension of Cantor-like sets, damage using the expected minimum and maximum

of two Beta(p, q) order statistics (no repair).

B(3.5) | B(1,1) | B(1,2) | B(1,3) | B(2,1) | B(2,2) | B(2,3) | B(3,1) | B(3,2) | B(3,3)
0.5715 | 0.6309 | 0.6663 | 0.6880 | 0.6663 | 0.6999 | 0.7203 | 0.6880 | 0.7203 | 0.7397

Table 3: Hausdorff dimension of some stuttering Cantor-like random sets, random damage and random

repair using the minimum and maximum of Beta(p, q) random variables.

Random Repair

Random | (1,1) | (1,1) (1,2) | (1.3) | (2,1) (2,2) 2,3) | (3,1) | (3,2) | (3,3)
Damage

(3,4) 05637 | 0.5795 | 0.5661 | 0.5430 | 0.5646 | 0.5768 | 0.5706 | 0.5447 | 0.5734 | 0.5684
(1,1) 0.6560 | 0.6698* | 0.6574 | 0.6379 | 0.6601 | 0.6723 | 0.6644 | 0.6371 | 0.6684 | 0.6717
(1,2) 0.6931 | 0.7029 | 0.7149 | 0.7082 | 0.6739 | 0.7009 | 0.7138 | 0.6540 | 0.6848 | 0.7030
(1,3) 0.7121 | 0.7118 | 0.7381 | 0.7391 | 0.6881 | 0.7124 | 0.7269 | 0.6648 | 0.6880 | 0.7121
(2,1) 0.6916 | 0.7015 | 0.6741 | 0.6564 | 0.7148 | 0.7054 | 0.6821 | 0.7056 | 0.7143 | 0.7031
(2,2) 0.7309 | 0.7453 | 0.7355 | 0.7191 | 0.7335 | 0.7516* | 0.7461 | 0.7190 | 0.7426 | 0.7519
(2,3) 0.7537 | 0.7634 | 0.7666 | 0.7539 | 0.7443 | 0.7685 | 0.7719 | 0.7258 | 0.7531 | 0.7662
(3,1) 0.7082 | 0.7144 | 0.6864 | 0.6676 | 0.7396 | 0.7089 | 0.6934 | 0.7398 | 0.7285 | 0.7079
(3,2) 0.7498 | 0.7627 | 0.7455 | 0.7303 | 0.7640 | 0.7644 | 0.7510 | 0.7545 | 0.7699 | 0.7668
(3,3) 0.7691 | 0.7853 | 0.7722 | 0.7620 | 0.7717 | 0.7902 | 0.7838 | 0.7560 | 0.7853 | 0.7895

(* exact value)

approximations. For the computation of the Hausdorff dimension s for the various combinations of

random and repair shown in tables 1 and 2, approximations with error less than 10~* have been

p.6079
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Table 4: Hausdorff dimension of Cantor-like sets, damage using the minimum and maximum of two
Beta(p, q) order statistics (no repair).

B, 5 | B(1,1) | B(1,2) | B(1,3) | B(2,1) | B(2,2) | B(2,3) | B(3,1) | B(3,2) | B(3,3)

272

0.4320 | 0.5616 | 0.6189 | 0.6497 | 0.6189 | 0.6693 | 0.6965 | 0.6497 | 0.6965 | 0.7214

obtained using 5000 runs for the computation of s.

3 Beta and BetaBoop stuttering damage/repair F}, sets

In section 2 we computed the Hausdorff dimension of stuttering Cantor-like sets to have some clue
on the asymptotic effect of different combinations of damage/repair. For practical purposes, the
observation of what happens after a rather small number of steps of damage/repair is crucial.
Therefore, we developed a program in R to exhibit Fj, for a chosen value of k. In Fig. 1 we
exhibit F, and F3, for various combinations of Beta(pg, qq) and Beta(p,, q,), for steps k € {2, 3}.

Figure 1: Plots of Fy and Fj for Beta(pg, qq) random damage and Beta(py, qr) random repair. The
parameters of damage/repair are indicated as (pq, ¢q)/(pr,qr). In each cell the left figure is the result
after 2 steps, the right figure the result after 3 steps.
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Brilhante et al. [2] extended the Beta(p, q) family by observing that 1 —z is the linear truncation
of —In z, and Brilhante et al. [1] considered a general BetaBoop(p, ¢, P, Q) family of random variables
with probability density function f, 4 po(z) = ca?PH(1 — 2)7 (= In(1 — 2))"H(—Inz)? L 1) (),
p,q, P,Q > 0 (which, for P = @ = 1 reduces to the Beta(p,q) family, and for ¢ = P = 1 is the
Betinha(p, @) studied in Brilhante et al. [2]). In Fig. 2 we exhibit F, and Fj, for combinations of
Beta(2,2) and BetaBoop(2,1,1,2) or BetaBoop(1,2,2,1), for damage/repair.
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Figure 2: Plots of F, and F3 for combinations of Beta(2,2), BetaBoop(1,2,2,1) and
BetaBoop(2,1,1,2) random damage and random repair. In each cell the left figure is the result
after 2 steps, the right figure the result after 3 steps. Beta parameters are indicated as B(p,q) and
BetaBoop parameters as BB(p, ¢, P, Q), for damage/repair considered in each cell.
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