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1 Introduction

The recent development of automated sensors has given access to very large collections of signals
sampled at fine time scales. However, exhaustive transmission, storage, and analysis of such massive
functional data may incur very large investments. In this context, when the goal is to assess a
global indicator like the mean temporal signal, survey sampling techniques are appealing solutions as
they offer a good trade-off between statistical accuracy and global cost of the analysis. They are in
particular competitive with signal compression techniques (Chiky and Hébrail, 2008). Focusing on
sampling schemes, Cardot and Josserand (2011) estimate the mean electricity consumption curve in
a population of about 19,000 customers whose electricity meters were read every 30 minutes during
one week. Assuming exact measurements, they first perform a linear interpolation of the discretized
signals and then consider a functional version of the Horvitz-Thompson estimator. They show that
estimation can be greatly improved by utilizing stratified sampling over simple random sampling and
they extend the Neyman optimal allocation rule (see e.g. Fuller (2009)) to the functional setup. As
a first contribution, the present work generalizes the framework of Cardot and Josserand (2011) to
noisy functional data. Assuming data are observed with errors that may be correlated over time, we
replace the interpolation step in their procedure by a local polynomial smoothing step. This sensibly
improves the estimation when the noise level is moderate to high.

In relation to mean function estimation, a key statistical task is to build confidence regions.
Following the ideas in Degras (2010), we build confidence bands in the finite population setting.
Specifically we derive a CLT for the mean function estimator in the space of continuous functions,
and then show that the supremum of the limiting process can be approximated in distribution by
simulating Gaussian processes conditional on the estimated covariance function (Cardot et al., 2011).
The bands attain nominal coverage and are easy and quick to implement.

Finally, the implementation of our mean function estimator requires to select a bandwidth in the
data smoothing step. Objective, data-driven methods are desirable for this purpose. As explained by
Opsomer and Miller (2005), bandwidth selection in the survey estimation context poses specific prob-
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lems that make usual cross-validation or mean square error optimization methods inadequate. In view
of the model-assisted survey estimation of a population total, these authors propose a cross-validation
method that aims at minimizing the variance of the estimator, the bias component being negligible
in their setting. In our functional and design-based framework, the bias is no longer negligible. We
therefore devise a weighted cross-validation criterion based on weighted least squares, with weights
proportional to the sampling weights. In the case of simple random sampling without replacement,
this criterion reduces to the cross-validation technique of Rice and Silverman (1991).

2 Notations and estimators

Consider a finite population Uy = {1,...,N} of size N and suppose that to each unit k € Uy
corresponds a real function X on [0,7], with T' < co. We assume that each trajectory X} belongs
to the space of continuous functions C([0,77]). Our target is the mean trajectory un(t), t € [0,T],
defined as follows:

(1) wnlt) = 30Xk,
keU

We consider a random sample s drawn from Uy without replacement according to a fixed-
size sampling design pn(s), where py(s) is the probability of drawing the sample s. The size ny
of s is nonrandom and we suppose that the first and second order inclusion probabilities satisfy
7 = P(k € s) > 0 for all k € Uy, and 7y := P(k&l € s) > 0 for all k,l € Uy, so that each unit
and each pair of units can be drawn with a non null probability from the population. Note that for
simplicity of notation the subscript N has been omitted. Also, by convention, we write 7, = 75 for
all k € Uy.

Assume that noisy measurements of the sampled curves are available at d = dy fixed discretiza-
tion points 0 =t; < 9 < ... <ty =T. For all unit k£ € s, we observe

(2) Y = Xi(t)) + €k

where the measurement errors €;; are centered random variables that are independent across the
index k£ (units) but not necessarily across j (possible temporal dependence). It is also assumed
that the random sample s is independent of the noise €j;, and the trajectories Xy (t),t € [0,T] are
deterministic.

Our goal is to estimate uy as accurately as possible and to build asymptotic confidence bands,
as in Degras (2010) and Cardot and Josserand (2011). For this, we must have a uniformly consistent
estimator of its covariance function.

2.1 Linear smoothers and the Horvitz-Thompson estimator

For each (potentially observed) unit k € Uy, we aim at recovering the curve Xj by smoothing the
corresponding discretized trajectory (Yig, ..., Yg) with a linear smoother (e.g. spline, kernel, or local
polynomial):

(8)  Xu(t) =3 Wi(t)Yiu-

J=1

Note that the reconstruction can only be performed for the observed units k € s. Here we use local
linear smoothers (see e.g. Fan and Gijbels (1997)) because of their wide popularity, good statistical
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properties, and mathematical convenience. The weight functions W;(t) express as

d{sat) = (4 = Dm0} K (57)
4) W) = Y OIOETE0) L i=1,....d,

where K is a kernel function, A > 0 is a bandwidth, and

d PR—
5) si(z) = % St -0 K (tﬂht> C1=0,1,2.
7j=1

We suppose that the kernel K is nonnegative, has compact support, satisfies K(0) > 0 and |K(s) —
K(t)| < C|s — t| for some finite constant C' and for all s,t € [0, 7.
The classical Horvitz-Thompson estimator (see e.g. Fuller (2009)) of the mean curve is

N 1 — X5(t) 1 — X,(t)

t = —_— == i 7.[
(6) En(t) N§ - NE ol
kes keU

where [}, is the sample membership indicator (I = 1 if k € s and I = 0 otherwise). It holds that
E(Ik) = Tk and E(kal) = Tkl
2.2 Covariance estimation

The covariance function of iy can be written as

(1) Cov (An (), Ain(t)) = yow(s.)

for all s,t € [0, T], where
1 Xiu(s) X)(t) 1 1
t) = — A= 200 4 —NT CE t
®) (s )= > Ay o m NZM (€x(s)ér(t))
kJleU keU
with

Xi(t) = Z?:l W () Xk (),
(9) (t) =20 Wit)ew;,
Akl :COV(Ik,Il) = Tl — TET].

A natural estimator of yx(s,t) (see e.g. Fuller (2009)) is given by

(10) Anls.) = 5 3 2 (Ik Il) R %i(0).

T T T
k,leU ki ke T

It is unbiased and uniformly consistency in mean square (Cardot et al., 2011).

3 Global confidence bands

In this section we build global confidence bands for py of the form

(1) {[ﬁN(t) j:ci][vl(/tz)} te [O,T]},

1/2

where ¢ is a suitable number and o (t) = An(t,t)"/<. More precisely, given a confidence level 1 — v €

(0,1), we seek ¢ = ¢, that approximately satisfies

(12) P(|G(t)| < co(t), ¥t € [0,T]) =1 — a,



Int. Satistical Inst.: Proc. 58th World Satistical Congress, 2011, Dublin (Session CPS004) p.3905

where G is a Gaussian process with mean zero and covariance function v = limy_,o, vn, and where
o(t) = ~(t,t)/2. (The convergence of iy to G in the space (C([0,T]), ]| - ||so) is proved in Cardot et
al. (2011).) Computing accurate and as explicit as possible bounds in a general setting is a difficult
issue. Under some technical conditions, Cardot et al. (2011) prove that it is possible to estimate
the threshold ¢ in (12) via simulations: conditionally on 7y defined in (10), one can simulate a large
number of sample paths of the Gaussian process G ~ with mean zero and covariance 7y and compute
their supremum norms and it suffices to set ¢ as the quantile of order (1 — «) of this distribution:

(13) P <\@N(t)\ < cGn(t), Yt € [0,T) WN) —1-a

4 A simulation study

In this section, we evaluate the performances of the mean curve estimator as well as the coverage
and the width of the confidence bands for different bandwidth selection criteria and different levels of

noise.

4.1 Simulated data and sampling designs

We have generated a population of N = 20000 curves discretized at d = 200 and d = 400 equidistant
instants of time in [0, 1]. The curves of the population are generated so that they have approximately
the same distribution as the electricity consumption curves analyzed in Cardot & Josserand (2011)
and each individual curve X, for k € U, is simulated as follows

(14) Xp(t +ZZg ve(t), telo,1],

where p is the mean functlon and the random variables Z, are independent realizations of a centered
Gaussian random variable with variance aZ The three basis function vy, v9 and v3 are orthonormal
functions which represent the main mode of variation of the signals. Thus, the covariance function of
the population (s, t) is simply

(15) ~(s,t) Zag ve(s)ve(t

To select the samples, we have considered two probabilistic selection procedures, with fixed
sample size, n = 1000,

e Simple random sampling without replacement (SRSWR).

e Stratified sampling with SRSWR in all strata. The population U is divided into a fixed number
of G = 5 strata built by considering the quantiles qqg 5, q0.7, go.85 and gg.g5 of the total consumption
fo X (t)dt for all units k € U. For example, the first strata contains all the units k& such that
fo X (t)dt < qo.5, and thus its size is half of the population size N. The sample size n, in stratum
g is determlned by a Neyman-like allocation, as suggested in Cardot and Josserand (2011), in
order to get a Horvitz-Thompson estimator of the mean trajectory whose variance is as small
as possible. The sizes of the different strata, which are optimal according to this mean variance
criterion, are reported in Table 1.

We suppose we observe, for each unit £ in the sample s, the discretized trajectories, at d
equispaced points, 0 =t < ... <tg=1,
(16) Yji = Xi(t)) + ey
where the €, ~ N(0,v(t;,t;)) are independent random variables and the parameter ¢ allows to control

the noise level.
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Stratum number 1 2 3 4 5
Stratum size 10000 | 4000 | 3000 | 2000 | 1000
Allocation 655 132 98 68 47

Table 1: Strata sizes and optimal allocations.

4.2 Weighted cross-validation for bandwidth selection

Assuming we can access the exact trajectories Xy, k € s, (which is the case in simulations) we consider
the oracle-type estimator

an =Y 2k,

T,
kes k

which will be a benchmark in our numerical study. We compare different interpolation and smoothing
strategies for estimating the X, k € s:

e Linear interpolation of the Yj; as in Cardot and Josserand (2011).
e Local linear smoothing of the Y}, with bandwidth h as in (3).

The crucial element here is h. To evaluate the interest of smoothing and the performances of data-
driven bandwidth selection criteria, we consider an error measure that compares the oracle jis to any
estimator i based on the noisy data Yy, k€ s,j=1,...d:

T
(18) L) = [ Gult) = 7o) .

Considering the estimator defined in (6), we denote by horacle the bandwidth h that minimizes (18)
and call smooth oracle the corresponding estimator.

When ), . 7r,;1 = N, as in SRSWR and stratified sampling, it can be easily checked that fis is
the minimum argument of the weighted least squares functional

(19) Zwk/ (X3 (t) — p(t))? dt

with respect to u € L2([0,T]), where the weights are wy = (N7;) L. Then, a simple and natural way
to select bandwidth h is to consider the following design-based cross validation

(20) WCV(h Zwkz< n— i ( ))2,

kes

where fi*(t) = D ves otk We X,(t), with new weights .

This weighted cross validation criterion is simpler than the cross validation criteria based on
the estimated variance proposed in Opsomer and Miller (2005). Indeed, in our case, the bias may be
non negligible and focusing only on the variance part of the error leads to too large selected values
for the bandwidth. Furthermore, Opsomer and Miller (2005) suggested to consider weights defined as
follows wy = wy/(1 — wy,). For SRSWR, since wy, = n~! one has wy, = (n — 1)}, so that the weighted
cross validation criterion defined in (20) is exactly the cross validation criterion introduced by Rice
and Silverman (1991) in the independent case. We denote in the following by hc, the bandwidth value
minimizing this criterion. For stratified sampling, a better approximation which keeps the design-
based properties of the estimator ﬁ&k can be obtained by taking into account the sampling rates in
the different strata. We have G strata with sizes Ny, g = 1,...,G and we sample n, observations,
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with SRSWR, in each stratum g. If unit k& comes from strata g, we have wy = N,(Nngy)~!. Thus, we
take wy = (Ny — 1){(N —1)(ny — 1)}~ for all the units ¢ # k in stratum g and just scale the weights
for all the units ¢ of the sample that do not belong to stratum g, wy = N(N — 1) lwy. We denote
by hwey the bandwidth value minimizing (20).

We can first note that stratified sampling allows to improve much the estimation of the mean
curve. We also remark that, for such large samples, linear interpolation performs nearly as well as the
smooth oracle estimator, especially when the noise level is low (6 < 15%). As far as bandwidth selection
is concerned, we can note that the usual cross validation criterion h., is not adapted to unequal
probability sampling and does not perform as well as linear interpolation for stratified sampling by
selecting too large values for the bandwidth. On the other hand, the weighted cross-validation criterion
seems to be effective to select good bandwidth values and produce estimators whose estimation errors
are very close to the oracle and perform better than the other estimators when the noise level is
moderate or high (§ > 20%). We now examine the empirical coverage and the width of the confidence
bands, which are built as described in Section 3. For each sample, we estimate the covariance function
An and draw 10000 realizations of a centered Gaussian process with variance function 4y in order to
obtain a suitable coefficient ¢ with a confidence level of 1 —a = 0.95. The area of the confidence band
is then fOT 2¢4/7(t,t) dt. The results highlight now the interest of considering smoothing strategies
combined with the weighted cross validation bandwidth selection criterion (20). It appears that linear
interpolation, which does not intend to get rid of the noise, always gives larger confidence bands than
the smoothed estimators based on hycy,. Moreover, smoothing approaches become more interesting as
the number of discretization points and the noise level increase.

As a conclusion of this simulation study, it appears that smoothing is not a crucial aspect when
the only target is the estimation of the mean, and that bandwidth values should be chosen by a cross
validation criterion that takes the sampling weights into account. When the goal is also to build
confidence bands, smoothing with weighted cross validation criteria lead to narrower bands compared
to interpolation techniques, without deteriorating the empirical coverage.

Acknowledgement. Etienne Josserand thanks the Conseil Régional de Bourgogne, France for its
financial support (FABER PhD grant).

REFERENCES

e Cardot, H.. Degras, D. and Josserand, E. (2011). Confidence bands for Horvitz-Thompson estimators
using sampled noisy functional data. Submitted. http://arxiv.org/abs/1105.2135.

e Cardot, H. and Josserand, E. (2011). Horvitz-Thompson estimators for functional data: asymptotic
confidence bands and optimal allocation for stratified sampling. Biometrika, 98, 107-118.

e Chiky, R. and Hébrail, G. (2008). Summarizing distributed data streams for storage in data warehouses.
In DaWaK 2008, I-Y. Song, J. Eder and T. M. Nguyen, Eds. Lecture Notes in Computer Science, Springer,
65-74.

e Degras, D. (2010). Simultaneous confidence bands for nonparametric regression with functional data.
Accepted for publication at Statistica Sinica. http://arxiv.org/abs/0908.1980

e Fuller, W.A. (2009). Sampling Statistics. John Wiley and Sons.

e Opsomer, J. D. and Miller, C. P. (2005). Selecting the amount of smoothing in nonparametric regression
estimation for complex surveys. J. Nonparametric Statistics, 17, 593-611.

e Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically
when the data are curves. J. Roy. Statist. Soc. Ser. B, 53, 233-243.



