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Introduction

The ubiquitous approach in analysis of wage differentials is the Blinder-Oaxaca (BO) decom-

position (Blinder A., 1973; Oaxaca R., 1973) Take as raw measure of the difference in pay between

two population groups the difference in the average (log) wage, say ∆U = µm − µf where f is typ-

ically a target group of interest (e.g., women or immigrants) and m is a reference group (e.g., men

or natives). If the composition of the two groups differ with respect to observable earnings-related

characteristics (e.g., human capital, age, jobs), it is useful to assess how much of ∆U can be attributed

to such endowments difference and what is due to ‘pure’ differences in pay. The latter is an ‘adjusted’

difference in average (log) wage that would be observed if the characteristics of the target group were

rewarded as those of the reference group, ∆A = µf |m−µf . ∆A is meant to capture strict differences in

compensation cleared of differences in group characteristics and is often interpreted as measuring ‘dis-

crimination’. Any remaining difference between ∆U and ∆A is reflective of the effect of ‘endowment’

differences. One important weakness of the regression-based approach however is that it relies on

parametric assumptions about the earnings regressions. Misspecification of the regression models may

lead to misleading inference about the various components of the BO decomposition. Non-parametric

techniques can be used to avoid this problem (Mora R., 2008). However, as emphasized in Fortin et

al.’s (2010) survey, these approaches are often much more computationally demanding, face the curse

of dimensionality when dealing with a large number of covariates, and/or do not allow straightforward

singling out the impact of individual covariates on wage differentials.

This paper considers a middle way that maintains ease of implementation of the regression-based

approach and the possibility to make detailed decompositions, but that is more robust in the presence

of misspecification than the classic approach. It involves estimating the coefficients from the reference

regression m by weighted least squares (rather than OLS) where the weights are function of the relative

density of the covariates in the reference and target samples. This procedure, suggested in Fortin et

al. (2010), has been demonstrated to lead to improved predictive performance when prediction is

made out-of-sample and in the presence of model misspecification (Shimodaira H., 2000; Sugiyama

M. and Müller K., 2005). This is directly relevant to the problem at hand since in computing ∆A the

reference (say male) sample regression coefficients are exclusively used to make wage predictions in the

target (say female) sample. Specifically, our objective in this paper is to empirically assess the gains of

using such a procedure in a case study to the gender pay gap in Luxembourg. We compare estimates
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against a simple OLS approach and a fully non-parametric local linear model. We also experiment

with alternative ways to specify and estimate the weighting function. While the approach is not

as robust to misspecification as a non-parametric model can be, we find that it can offer significant

improvement over the standard approach.

Propensity score reweighted pay gap estimation

Let µf and µm denote average log wage in, respectively, a sample of Nf female workers –the

target group– indexed i = 1, . . . , Nf and a sample of Nm male workers –the reference group– indexed

j = 1, . . . , Nm. Also let Di ∈ {0, 1} denote the group belonging of observation i with Di = 1 identifying

female workers and Di = 0 male workers.1 The raw, unadjusted, wage differential is

∆U = µm − µf

and the BO decomposition of this wage gap is

∆U = (µm − µf |m)︸ ︷︷ ︸
explained/endowment component

+ (µf |m − µf )︸ ︷︷ ︸
unexplained/discrimination component

where µf |m is the counterfactual average log wage of the reference group of female workers if their

characteristics were rewarded as those of the comparison group of men.

Regression-based estimation of µf |m is done by modelling the relationship between observed

covariates X and log wage (Y ) with a separate linear regression model in each of the two groups:

Yi = Xiβ
d + ei i = 1, . . . , Nd d ∈ {m, f}

where E[ei|Xi, Di] = 0. Under these assumptions, µf , µm and µf |m can be expressed as

µf =
1

Nf

Nf∑
i=1

Xiβ
f , µm =

1

Nm

Nm∑
j=1

Xjβ
m, µf |m =

1

Nf

Nf∑
i=1

Xiβ
m.

and the adjusted wage differential is

∆A = µf |m − µf =
1

Nf

Nf∑
i=1

Xi(β
m − βf ) = X̄f (βm − βf )

where X̄f is a row vector of covariate means in the sample of interest.

Application of reweighted regression in this context involves estimating the regression coefficients

βf by ordinary least squares and βm by weighted least squares:

β̂f =

(Nf∑
i=1

X ′iXi

)−1 Nf∑
i=1

X ′iYi, β̂m =

(Nm∑
j=1

X ′jω(Xj)Xj

)−1 Nm∑
j=1

X ′jω(Xj)Yj

where the reweighting factor ω(Xj) is a function of the ratio of the probability density of covariates

at Xj in groups m (fm) and f (ff ). We restrict attention here to functions of the form

ω(Xj ;λ) =

(
ff (Xj)

fm(Xj)

)λ
λ ∈ [0, 1]

1For clarity of exposition, this article is framed in terms of wage differentials across gender, but the arguments and

techniques apply to any continuous outcome variable that can be modelled in a regression setting and any two populations

of interest, such as immigrants and natives, etc.
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This specification leads to the classic unweighted OLS case with λ = 0, and gives the baseline fully

reweighted case discussed in Fortin et al. (2010, pp. 45–49) with λ = 1.

The intuition is that when model parameters are used for predictions out-of-sample one should

give more weight at the estimation stage to observations close to the points that will be used for pre-

dictions. Observations in the reference sample that have no close counterparts in the target sample are

discarded –or more precisely down-weighted. This reweighting is however irrelevant when the para-

metric model is correctly specified and therefore generates valid prediction anywhere on the support

of definition of covariates.

Superior predictive performance in the target sample of the reweighted regression based on the

density ratio in the presence of misspecification is formally demonstrated in Shimodaira (2000). The

reweighted model with λ = 1 is shown to lead to asymptotically optimal predictions in the prediction

sample. Intermediate values of λ < 1 may be preferred in finite samples. Optimal choice for λ in finite

sample, in terms of minimizing expected prediction error, depends on unknown population parameters

but Shimodaira (2000) suggests that estimate by minimizing the following information criteria:

λ̂ = min
λ

{(
Nm∑
j=1

ff (Xj)

fm(Xj)

(
ε̂2j
σ̂2

+ log(2πσ̂2)

))
+ 2

(
Nm∑
j=1

ff (Xj)

fm(Xj)

(
ε̂2j
σ̂2
ĥj +

ω(xj ;λ)

2ĉω

(
ε̂2j
σ̂2
− 1

)2))}

where ε̂j = (Yj − Xj β̂
m) is the WLS regression residual for observation j, ĉω =

∑Nm
j=1 ω(Xj ;λ) is

the sum of weights, σ̂2 =
∑Nm

j=1 ω(Xj ;λ)ε̂2j/ĉω is an estimate of the residual variance from the WLS

regression, and ĥj is the jth element of the diagonal of the hat matrix of the WLS model.2, 3

Note however that Shimodaira’s IC does not capture the variance inflation associated with

estimation of the probability density functions ratio which is not normally known in applications (see

supra). This potentially limits its useability in practice.

Along the same lines as Shimodaira’s information criteria, ‘reweighted R2’ measures can be

useful to assess improvement in fit in the support of the data covered by the target sample when using

WLS:

RW2 = 1−

Nm∑
j=1

ff (Xj)

fm(Xj)
ε̂2j

Nm∑
j=1

ff (Xj)

fm(Xj)
(Yj − µ̃m)2

−1

where µ̃m =
(∑Nm

j=1
ff (Xj)
fm(Xj)

)−1 (∑Nm

j=1
ff (Xj)
fm(Xj)

Yj

)
is the reweighted mean log wage in the reference

sample. RW2 captures the fit of the WLS regression model in the reweighted male sample which, by

construction, has the same covariate distribution as the female sample over which predictions will be

made. This can be compared to the equivalently reweighted R2 obtained when the OLS coefficients

are used:

RW2
0 = 1−

Nm∑
j=1

ff (Xj)

fm(Xj)
(Yj −Xj β̂

m
0 )2

Nm∑
j=1

ff (Xj)

fm(Xj)
(Yj − µ̃m)2

−1

where β̂m0 denotes OLS coefficient estimates. The degree to which RW2 exceeds RW2
0 can be taken

as an indication of the improvement in predictive accuracy of the WLS compared to the OLS in the

target sample.

Direct estimation of the density ratio can however be replaced by estimation of the propen-

sity score for which simple estimators are available even with large K. As is well-known (see e.g.

2The hat matrix is H = X(X ′WX)−1X ′W where W is the vector of weights ω(Xj ;λ).
3See Sugiyama M. and Müller K. (2005) for an alternative approach to selecting λ.
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Rosenbaum and Rubin, 1983), simple application of Bayes’ rule yields

ff (Xj)

fm(Xj)
=

p(Xj)

1− p(Xj)

1− π
π

where π = Pr(Di = 1) is the (unconditional) probability of belonging to the target group and p(x) =

Pr(Di = 1|x) is the propensity score, that is, the conditional probability of belonging to the target

group for a covariate vector x.

Illustrative example and Monte Carlo simulations

Before assessing the gain to using propensity score reweighting in a full-fledge empirical analysis,

we first illustrate the technique on a simulated example.

We replicate Shimodaira’s (2002) model with observations on a single covariate x drawn from

two population groups distributed x ∼ N
(
µd, τd

)
, with µf = 0, τ f = 0.32, µm = 0.5, τm = 0.52. The

resulting density ratio is
ff (x)

fm(x)
∝ exp

(
−(x− µ̄)2

2τ̄

)
where τ̄ = ((τ f )−1 − (τm)−1)−1 = 0.382 and µ̄ = ((τ f )−1µf − (τm)−1µm) = −0.28. (See Figure 1 for

a graphical illustration of resulting samples). Log wages are given by

y = −x+ x3 + ε ε ∼ N
(
0, 0.32

)
for both groups. The adjusted wage differential is therefore nil.

The true relationship between log wage and x is cubic but we consider a misspecified model

where the relationship between x and y is assumed linear:

y = α+ βx+ e E(e|x) = 0.

Figure 1 illustrates the model and the reweighting principle on one simulated sample of 100

‘males’ (blue markers and lines) and 100 ‘females’. Panel (a) shows a scatter plot of the data along

with kernel estimates of the covariate x density distributions in the two groups. The black line traces

E(y|x) from the true model. With the chosen model, the reference sample (males) is spread over a

broader (and on average higher) range of values for x than the target sample (females). Crucially,

E(y|x) is approximately linear over the range of the target sample but the relationship is non-linear

over the full range of the reference sample. As a consequence the fitted linear regression in the female

sample (shown as a solid red line in Panel (b)) approximates E(y|x) closely, but the linear regression

in the male sample (shown as a dashed blue line in Panel (b)) is off-target and very different from the

line of the female sample (despite both groups having in fact identical non-linear conditional means).

Using coefficients from these misspecified linear regressions leads to an estimate of the adjusted wage

gap of –0.126 to the advantage of women (where it is truly nil).

The reweighting strategy involves assigning differential weights to observations from the refer-

ence, male sample such that the probability density function of covariates in the reweighted sample

is as close as possible to the density in the target, female sample. This is illustrated in Panel (c)

in which male observations are plotted with markers proportional to their weight (weights in this

plot are defined as the ratio of the true population density functions ff (x) and fm(x)). Reweighted

regression lines are shown in Panel (d). The reweighted estimates are much closer to the target regres-

sion estimates at least where the weights are based on the true density ratio (which is not normally

known in real data applications) and on the propensity score estimated with a local linear smoother.

In this particular example, failure of the parametric probit propensity score model is attributable to
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Figure 1: Random samples of 100 reference observations (blue dots) and 100 target

observations (red crosses) with regression lines and density estimates
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incapacity of the probit model to estimate a valid weight for the smallest x value in the reference

sample. Linearity in x of the single index component of the probit model implies that this particular

observation receives a large weight where it should in fact be down-weighted. This is a reminder that

a naive linear index propensity score model is likely to fail whenever the target sample is ‘sandwiched’

within the reference sample (with observations both below and above the target sample observations).

Gender wage differentials in Luxembourg

To assess the impact of reweighting in a real data empirical application, we analyze gender wage

differentials using data from the Panel Socio-Economique Liewen zu Lëtzebuerg, a longitudinal survey

on income and living conditions representative of the Luxembourgish population. Recent estimates

from STATEC, the national statistical office of Luxembourg, suggest that women are paid on average

20 percent less than men in Luxembourg, and that approximately half of this gap can be accounted

for by differences in human capital and job characteristics (STATEC, 2007). Estimates of comparable

magnitude based on PSELL-3/EU-SILC data are reported in Van Kerm (2009). This is similar to

estimates found in other European countries (see e.g. Gregory M, 2009). In our analysis of wage

differentials, we consider the period 2003-2008 and we extract a sample of 25- to 55-year-old male

and female workers. We keep both private and public sector employees (with the exception of civil

servant from international institutions) but drop self-employed workers (for whom gross hourly wage

is ill-defined). For similar reasons, we also drop employees recorded to work in agriculture. We

pool all samples from 2003 to 2008. We focus on gender differences in gross hourly wage which is

computed as gross monthly salary in current job (including paid overtime) divided by 4.32 times work

hours in a normal week on the job.4 Wages are expressed in constant January 2007 prices. In the

present application we aim to compute adjusted wage gap estimates after controlling for both human

capital characteristics (including age, nationality, education and actual years of work experience) and

employment and contract types (sector of activity, firm size, supervisory activity, fixed-term contract,

and part-time indicator). We take this particular position here since controlling for employment and

contract types tends to lead to covariate imbalance by gender. A sample of results are reported in

Figure 2: estimates of RW2, Shimodaira’s IC and adjusted wage gap.5

4To avoid results being driven by a small number of possibly mis-measured wages we excluded observations with

hourly wages below 3 or above 60.
5We also extended the application of propensity score reweighting to estimation of quantile differences. Additional

results are omitted, but available upon request.
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Figure 2: R2, Information Criterion and Total Wage Gap estimates
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These results suggest a choice of λ = 1 among the 10 values compared here for all models. This

suggests that intermediate choices of λ for large samples may not necessarily pay off. Bear in mind

however that Shimodaira’s IC does not take into account estimation of the propensity scores. The

total wage gap estimates we get by applying the probit weighted regressions, compared to those from

the no-weighted model, are noteworthy: about 0.06 in the weighted regression model against 0.11 in

the standard OLS model. Surprisingly, we find no significant differences between the weighted and

unweighted models if we consider a local linear smoother to estimate reweighting factors at about 0.10

with the unweighted model.
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