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Introduction

The use of auxiliary information to improve the accuracy of a total estimator has a long history

in sampling theory. The linear regression model and its multiple variants have been used to assist the

estimation of totals in survey sampling. Parametric and nonparametric models have been used in order

to incorporate the auxiliary information. Estimators using these type of models are commonly name

as model-assisted estimators. Estimators using the available auxiliary information in the population

usually have better performance in terms of a small variance.

This kind of estimators include GREG type estimators (see for example, Pfefferman and Rao,

2011), calibration estimators (Deville and Särndal, 1992), calibration estimators based on neural net-

works (Montanari and Ranalli, 2005), local polynomial regression estimators (Breidt and Opsomer,

2000) and Wilcoxon rank based estimators (Gutierrez and Breidt, 2009), among many others. Model

assisted estimators are approximately unbiased irrespective of whether the assumptions of the models

hold or not. Nevertheless, it is required that the model fits reasonably good in order to achieve an

efficient use of the auxiliary information (Särndal, Swensson and Wretman, 1992). The existence of

extreme observations such as influential points and/or outliers implies that the use of simple linear

regression could be inappropriate in order to assist the estimation of a total population. Thus, the use

of robust regression techniques appears as an alternative. Other authors that have already worked in

the problem of dealing with outliers in survey data are Chambers (1986, 2000) and Lee (1995).

In particular, in this document, we will show that the use of quantile regression models reduces

the effect of influential points on the model fitting and therefore gives a smaller variance. Also, the

proposed estimator shows better performance than the GREG estimator when the normality assump-

tion does not hold. The proposed estimator considers a median regression model in order to assist

the total estimation. The rapid increase in computational capabilities nowadays makes that the use

of the proposed approach is easy to implement.

The document is structured as follows. The first section summarizes the essentials of quantile

regression. Then, in the second section we propose an estimator of the quantile regression parameters

based on survey data. In the third section, an estimator of the population total is presented using

median regression. Then, the performance of the estimators is evaluated empirically through a simu-

lation study. The paper ends with some conclusions and proposals for future research.
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Quantile Regression

Koenker and Bassett (1978) introduced the quantile regression as a robust alternative to the

least squares estimation for the linear model. Quantile regression has shown higher efficiency over a

wide range of error distributions and under the presence of influential points.

Koenker (2005) defines the τ -th quantile Q(τ) as Q(τ) = inf{y : F (y) ≥ τ} where, F (y) = P (Y ≤
y), 0 ≤ τ ≤ 1. The τ -th quantile can be found solving the equation

(1) min
Q(τ)

τ
∫

y≥Q(τ)

|y −Q(τ)|+ (1− τ)

∫
y<Q(τ)

|y −Q(τ)|


On the other hand, the τ -th sample quantile (in particular for the median, τ = 0.5) can be alternatively

found solving:

(2) min
Q(τ)

τ ∑
yk≥Q(τ)

| yk −Q(τ) | +(1− τ)
∑

yk<Q(τ)

| yk −Q(τ) |


Let us consider y1, y2, . . . yN the values of the variable of study for each element k in the pop-

ulation. Suppose there are p auxiliary variables denoted x1,...xp. For the k-th element, the auxiliary

vector xk = (x1k, ..., xpk)
′ is defined for k = 1, 2, ...N . Suppose there is a superpulation model ξ such

that yk = B(τ)′xk+εk, for k = 1, 2, . . . , N . The estimation of the parameters of the quantile regression

is carried out in an analogous way to the quantile estimation above. The minimization problem can

be expressed now as:

(3) min
B(τ)

f(B(τ)) = min
B(τ)

τ
∑

yk≥B(τ)′xk

| yk −B(τ)′xk | +(1− τ)
∑

yk<B
(τ)′xk

| yk −B(τ)′xk |

This is essentially an optimization problem that could be solved using linear programming

techniques. More details can be found in Koenker and D’Orey (1987, 1994), Koenker (2005), Mora

(2005) and Hao and Naiman (2007). More advanced techniques in quantile regression including weights

is developed in detail in Koenker (2005). Suppose a vector of weights w1, ...wN is available in the

population U . The estimators for the weighted quantile regression parameters are estimated by solving:

(4) min
B(τ)

f(B(τ)) = min
B(τ)

τ
∑

yk≥B(τ)′xk

wk | yk −B(τ)′xk | +(1− τ)
∑

yk<B
(τ)′xk

wk | yk −B(τ)′xk |

Estimation of the Quantile Regression Parameters for Survey Data

A sampling estimator for B̂
(τ)

is proposed following the ideas for the weighted quantile regression

in the previous section above. The quantile regression parameters for data coming from a sample survey

s can be estimated using a median regression (τ = 0.5) and solving:

(5) min
B̂

(τ)
f(B̂

(τ)
) = min

B̂
(τ)

τ
∑

s ∩
{
yk≥B̂

(τ)′
xk

}
| yk − B̂

(τ)′
xk |

πk
+(1−τ)

∑
s ∩

{
yk<B̂

(τ)′xk

}
| yk − B̂

(τ)′xk |
πk

πk is the first order inclusion probability of the unit k. There is not a closed expression for B̂
(τ)

and then the Taylor linearization method cannot be used in order to get a variance estimator. Other

different values of τ could be used in order to achieve a more complete understanding of how the

response distribution is affected by the covariables.
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Quantile Regression Based Estimator

The quantile regression based estimator for a population total can be obtained in an analogous

way of the GREG estimator. A linear relation between the study variable y and a vector of covariables

x is asumed such as yk = x′kB
(τ)+Ek, where Ek = yk−y0k and y0k = x′kB

(τ). Then, the total population

can be expressed as ty =
∑

U (ŷk + Ek) =
∑

U x′kB
(τ) +

∑
U (yk − x′kB

(τ)). Then, analogously to the

least squares approach, a quantile regression based estimator for the total population is also:

(6) t̂y =
∑
U

x′kB̂
(τ)

+
∑
s

yk − x′kB̂
(τ)

πk
= t̂yπ + (tx − t̂x)′B̂

(τ)

where B̂
(τ)

is estimated through quantile regression.

We will denote as t̂yqr, the quantile regression estimator (QREG) obtained considering a me-

dian regression. In other words, t̂yqr = ˆtyπ + (tx − t̂x)′B̂
(0.5)

. This expression can be written

as t̂yqr =
∑

s
Ek
πk

+
(∑

U x′
k

)
B =

∑
s Ĕk +

(∑
U x′

k

)
B. Then, the variance can be written as

V (t̂yqr) =
∑∑

U ∆klĔkĔl, and the variance estimator V̂ (t̂yqr) =
∑∑

s ∆̆klĕkĕl, where ek = yk − ŷk,
ŷk = x′kB̂

(τ)
and ĕk = ek/πk.

Simulation

In order to evaluate the accuracy and the efficiency of the proposed estimator, some simulations

were used to analyze different models changing the distribution of the residuals and considering differ-

ent variance structures. For the correctly specified variance structure models, the quantile regression

model did not take into account the variance structure. Additionally, different scenarios with different

types of outliers were made in order to compare the performance of the quantile regression estimator

with some well-know estimators such as the Horvitz-Thompson (HT) estimator and the GREG esti-

mator. It is shown, after the simulation results, that the QREG estimator is more efficient than the

other two estimator under non-normal distribution assumptions and under the presence of influential

points.

A Monte Carlo simulation was carried out considering M = 5, 000 repeated SI samples with

n = 100 from a population of N = 1, 000 elements. A superpopulation model yk = 10 + 2xk + εk such

that Eξ(yk) = 10 + 2xk and Vξ(yk) = σk was specified for all k = 1, 2, ...N . The values of the auxiliary

variable were generated from an exponencial distribution with parameter equal to 1. The εk were

assumed independent and normally distributed. In each sample, three estimators: the HT estimator

tπ, the GREG estimator ˆtyreg and the QREG estimator ˆtyqr were calculated. The simulations were

carried out by using the statistical software R 2.12.2. The algorithms are available under request to

the authors.

The performance of the estimators is evaluated in terms of their Relative Bias (RB) and their

Mean Square Error (MSE). For purpose of comparison between an estimator t̂y with the QREG

estimator, we used the relative efficiency (RE) defined by RE(t̂y, t̂yqr) =
MSE(t̂y)

MSE(t̂yqr)
. Values of RE

bigger than one indicates that precision is gained using the QREG estimator. Ratios close to one

suggest that one is not losing efficiency with the estimator proposed in this paper.

The model specifications considered in this simulation were as follows:

1. M1: Linear model with correctly specified variance structure, normal, uncorrelated and ho-

moscedastic errors (Eξ(yk) = 10 + 2xk and Vξ(yk) = 1).

2. M2: Linear model with correctly specified variance structure, normal, uncorrelated and het-

eroscedastic errors. The superpopulation model ξ has the same Eξ(yk) than M1 but Vξ(yk) =
√
xk.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS010) p.4034



3. M3: Linear model with incorrectly specified variance structure, normal, uncorrelated and het-

eroscedastic errors. The superpopulation model is the same as M2 but the model is incorrectly

specified for the GREG estimator ignoring the variance structure.

4. M4: Linear model with correctly specified variance structure and non-normal, uncorrelated and

homoscedastic errors. This model assumes an exponential distribution with parameter equal to

one.

5. M5: Linear model with five percent of contaminated data with a mixture of normal distributions

for the residuals. The errors were generated with a mixture of normal distributions with a zero

mean for the 95% of the data and a mean of 5% for the remaining data. The variances for both

distributions were equal to 1.

Apart from these first five scenarios, different configurations of extreme observations were con-

sidered defining new values for xk and yk as:

(7) x∗k =

{
xk 99 % of no contaminated points

δk 1 % of contaminated points
, y∗k =

{
yk 99 % of no contaminated points

ωk 1 % of contaminated points

with δk and ωk defined for every particular case below.

6. M6: Linear model with normal residuals and the presence of 1% of outlier points in the x-axis.

Ten points out of n = 100 were randomly contaminated increasing their values in the x-axis and

the values in the y-axis were simulated on the range of the original data according to (7). Four

different scenarios under this particular model were analyzed for different configurations of δk
and ωk as follows:

• M6a: δk ∼ U(x+ 3s, x+ 4s) and ωk ∼ U(min(y), Q(0.05)(y)).

• M6b: δk simulated as in M6a and ωk ∼ U(Q(0.95)(y),max(y)).

• M6c: δk ∼ U(x+ 5s, x+ 6s) and ωk simulated as M6a.

• M6d: δk simulated as M6c and ωk simulated as M6b.

7. M7: Linear models with normal residuals and the presence of 1% of outlier points in the y-axis:

Ten points out of n = 100 were randomly contaminated increasing their values in the y-axis and

the values in the x-axis were simulated on the range of the original data according to (7). Four

different scenarios under this particular model were analyzed for different configurations of δk
and ωk as follows:

• M7a: δk ∼ U(min(x), Q(0.05)(x)) and ωk ∼ U(y + 3s, y + 4s).

• M7b: δk ∼ U(Q(0.95)(y),max(x)) and ωk simulated as M7a.

• M7c: δk simulated as in M7a and ωk ∼ U(y + 5s, y + 6s).

• M7d: δk simulated as M7b and ωk simulated as in M7c.

8. M8: Linear models with normal residuals and the presence of 1% of outlier points in the y-axis

and the x-axis. Ten points out of n = 100 were randomly contaminated increasing their values

in both the x-axis and the y-axis. Two different scenarios under this particular model were

analyzed for different configurations of δk and ωk as follows:

• M8a: δk ∼ U(x+ 3s, x+ 4s) and ωk ∼ U(y + 3s, y + 4s).

• M8b: δk ∼ U(x+ 5s, x+ 6s and ωk ∼ U(y + 5s, y + 6s).
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Model Measure t̂π t̂yreg t̂yqr Model Measure t̂π t̂yreg t̂yqr

M1 RB 0.0024 0.00037 0.00021 M6d RB -0.02661 -0.00553 -0.00181

MSE 311044 9293 9388 MSE 296138 16407 9536

M2 RB 0.0019 -0.00058 -0.00145 M7a RB -0.02712 0.00246 -0.0023

MSE 448529 139172 140531 MSE 296109 11093 9299

M3 RB 0.0019 -0.00098 -0.00145 M7b RB -0.02712 0.00088 -0.00223

MSE 448529 139100 140531 MSE 296109 9631 9340

M4 RB -0.00185 -0.00477 -0.00559 M7c RB -0.02704 0.00424 -0.00229

MSE 310422 9326 9256 MSE 296109 13083 9299

M5 RB -0.0084 -0.00192 -0.00308 M7d RB -0.02704 0.00389 -0.00222

MSE 273594 10724 9819 MSE 296109 10664 9340

M6a RB -0.02678 -0.00844 -0.00186 M8a RB 0.0167 0.00246 -0.00177

MSE 296108 17172 9519 MSE 45193 25485 9240

M6b RB -0.02661 -0.00321 -0.00181 M8b RB -0.02649 -0.00032 -0.00193

MSE 296138 10154 9547 MSE 299140 11852 9175

M6c RB -0.02678 -0.01046 -0.00186

MSE 296108 37195 9508

Table 1: RB and MSE of the estimators under the different scenarios considered.

Table 1 above summarizes the results of RB and MSE for the three estimators under the different

scenarios considered in the simulation. Table 2 shows the Relative Efficiency of QREG with respect

to HT and GREG.

Model t̂π t̂yreg Model t̂π t̂yreg

M1 33.13 0.99 M6d 31.14 3.91

M2 yM3 3.19 0.99 M7a 31.84 1.19

M4 33.54 1.01 M7b 31.7 1.03

M5 27.86 1.09 M7c 31.84 1.41

M6a 31.11 1.8 M7d 31.7 1.14

M6b 31.02 1.06 M8a 32.6 1.29

M6c 14.39 5.62 M8b 4.89 2.76

Table 2: Relative Efficiency of the QREG estimator.

Conclusions and Areas of Further Work

The aim of this research was to obtain a more efficient estimator under high skewed distributions

and the presence of extreme observations. The proposed QREG estimator was based on quantile

regression using auxiliary information. According to the simulation results, the QREG estimator

has similar performance than the GREG estimator in terms of the mean square error under normal

distribution of the residuals (M1 - M3). All the three estimators have a negligible relative bias.

Therefore, supposing regular conditions and even in the absence of homoscedasticity, the GREG and

the QREG estimators lead to similar results in terms of MSE and RB. If a non-normal distribution is

considered for the residuals (M4 with an exponential distribution and M5 with a mixture of normal

distributions for the residuals), the QREG performs slightly better than the GREG estimator.

In the scenarios with extreme points, the QREG estimator is considerably better in terms of

MSE than the GREG estimator specifically in the scenarios in which the contaminated points are

further to the mean of the x-axis and when the contamination in the y-axis induces a dramatic change

in the slope of the model. For instance, under scenarios M6c and M6d and according to table 2, the

MSE of the QREG estimator is less than one third than the MSE of the GREG estimator. In scenarios

with outliers in the y-axis, the QREG estimator works better although the reduction in terms of MSE
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is not so extreme. Finally, in scenarios considering extreme points both in the x-axis and the y-axis,

the QREG estimator has better performance than the GREG estimator. All the considered scenarios

in the simulation are not uncommon in the practice of survey sampling.

Areas of further research are the consideration of other nonparametric methods such as local

polynomial quantile regression in the case of not clear patterns. Also, when the conditional densities

of the response are heterogeneous, it would be useful to consider weighted quantile regression for the

assisted estimator. Theoretical properties of the QREG estimator such as asymptotic unbiasedness,

consistency, sufficiency need to be verified. Wang and Opsomer (2011) study the theoretical properties

of survey estimators of quantile populations that consider non-differentiable functions of estimated

quantities.
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