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1. Introduction 

Spatial populations arise in a number of disciplines, including geology, ecology, and environmental 

science, in  connection with the study of natural phenomena in two-dimensional regions. We refer, for exam-

ple, to mineral resources, vegetation cover, soil chemical composition, pollution concentration in soil, abun-

dance of fish in a lake surface.   

We assume that the response variable is described by an integrable function )(xy defined for each loca-

tion ],[ 21 ′= xxx , where 1x  and 2x  are the geographical coordinates, belonging to a bi-dimensional domain 

A. The population parameter we are interested in is the mean of the response variable, that is the quantity 

,)(
||

1
∫=
A
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Y xx  

where || A  denotes the area of domain A. Our aim is to estimate this parameter on the basis of a random 

sample ),,( 1 ns xx K=  of n location points in A drawn by a sampling design that assigns inclusion probabi-

lity density )(π x  to location .x   

There has been a long-standing debate in the statistical literature on the relative merits of design-based 

and model-based approaches to spatial population surveys (see, for example, Brus and de Gruijter, 1997). A 

wide-spread opinion is that a design-based approach is the best option if inference focuses on global quanti-

ties, such as means or totals, and, besides, validity of the result is more important than efficiency (the word 

“validity” refers to the fact that the design-based approach warrants consistency and an objective assessment 

of the uncertainty of the estimator, yielding confidence intervals with the correct coverage). On the other side 

a model-based approach is the best choice if we are interested in constructing a map, or in predicting the va-

lues of the response variable in small areas in the most efficient way. In this case, the efficiency is increased 

by postulating a model describing the spatial autocorrelation of data, which however may weaken  the vali-

dity of the resulting inference (efficiency more important than validity). 

The design-based approach is largely adopted to assess natural resource condition (see de Gruijter  et  

al. 2006; Gregoire and Valentine, 2008). The model based-approach is the most used framework in geostatis-

tics (mining, soil studies, air pollution monitoring), where modeling the spatial correlation of data is concep-

tually more appropriate. 

One of the principal objections against the design-based approach to survey spatial populations is that 

it pays little care to ancillary information provided by the sample labels (spatial coordinates), using it mainly 

as the basis for stratification. One possible answer to this problem is a more intense use, at the design stage, 

of prior knowledge on spatial pattern in the response variable for achieving more efficient designs. In the 

continuous case, a similar goal has been pursued by the  proposal of spatially-balanced sampling designs. In 
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this context, we mention the random-tessellation design (Overton and Stehman, 1993) and the generalized 

random tessellation stratified design (Stevens and Olsen, 2004).  

Less attention has been devoted to techniques aimed at improving efficiency at the estimation stage, 

using models for capturing insight into spatial pattern under the model-assisted setting (Särndal et al.,1992). 

To our knowledge, only a few studies have appeared that adopt this perspective. Brus (2000) advocated   the 

use of auxiliary variables in the form of a regression estimator within the model-assisted framework. Brus 

and Te Riele (2001) dealt with the same problem in a two-phase sampling design where the first phase is 

used to estimate the unknown means of the auxiliary variables. For continuous spatial populations, Barabesi 

and Marcheselli (2005) used the control-variate Monte Carlo integration method to increase the regression 

estimator accuracy.  

In this paper, we present an application of semiparametric methods within the model-assisted approach 

to the estimation of means of spatial populations, using the spatial coordinates as auxiliary variables. The 

idea is to assume a low-rank spline regression model  as working model, and then to employ the resulting fit-

ted values as predictors of the response values in a difference or regression estimator. 

 

2. The spline regression model assisted estimator 

Following Ruppert et al. (2003, Chapter 13), we begin with the choice of  K  knots, ,,,1 Kκκ K  in A, 

and with the definition of  K  pseudo-covariate values as follows  
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11 Azzzz KK ∈= − xΩxxxx
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Here  

,,,1||),log(||||)(||)( 2 Kkz kkk K

(
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and Ω  is a KK × matrix having as generic element the quantity 

||)||log(||)||( 2
lklk κκκκ −− ,    k, l = 1, 2, …, K, 

 where |||| ⋅  
is the Euclidean norm.  

Assume for )(xy  the following working model 
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where the regression coefficients are fixed, called spline regression model. 

Fitting model (1) to the surface )(xy by means of the penalized least-square method requires the mini-

mization of the function  
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where λ  is the penalty factor. It can be shown that the design-based estimator of the parameter vector 

]~,
~

[ ′′′ uβ which minimizes function (2) is given by the following formula (see Cicchitelli and Montanari, 

2011) 
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where sX is an 3×n

 

matrix having as i-th row ;,,1],,,1[ 21 nixx ii K= sZ is a Kn× matrix whose i-th row is 

given by )];(,),([ 1 iKi zz xx K ))(π1/,),(πdiag(1/ 1 ns xxΠ K= is the diagonal matrix having as elements the 

inclusion probability densities of sample locations ;,,1 nxx K =D blockdiag .],[ 33 KI0 ×  We notice that the 

trace of the projection matrix to achieve the fitted values gives the number of degrees of freedom, r, of the 

spline regression model, which in turn depends on the penalty factor λ . 

Now, for each location ,A∈x  we can predict the response values )(xy by the fitted model 

.),(~̂)(~̂~̂~̂~̂
)(~̂

1122110 Azuzuxxy KK ∈+++++= xxxx Kβββ
 

Then, following  Särndal (1992), a model-assisted design-based estimator of the population mean is given by 
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where ).(~̂)()( iii yye xxx −=  

An estimator of its variance
 
is given by 
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(the suffix p on the left-hand side of above equation indicates that we are operating in the design-based 

framework, i.e. that the expectation is taken with respect to the sampling design), where ),( ji xxπ is the se-

cond order  inclusion density probability function.  

It can be shown that the proposed estimator is approximately design unbiased and n - consistent.   

 

3. Comparison with the kriging predictor 

Now, it is of interest to compare our estimator to the kriging predictor under a design-based perspec-

tive. A natural objection against this exercise is that the optimality properties of the kriging and its variance 

hold within the model-based context. Nevertheless, studying the behavior of the predictor in repeated sam-

pling from a fixed population may be useful to verify its suitability to be assumed as an estimator within the 

design-based framework. McArthur (1987) compared kriging and design-based methods on simulated spatial 

data, concluding that kriging is biased. Brus and de Gruijter (1997) presented a simulation study where a 

comparison was made between the Horvitz-Thompson estimator combined with the stratified random sam-

pling and the kriging predictor combined with the systematic sampling. Their overall conclusion was that the 

kriging predictor is more efficient than Horvitz-Thompson estimator for large sample size, but it often pre-

sents poor confidence interval coverage rates due to the fact that kriging variance is not a good estimator of 

sampling variance of the kriging predictor. Ver Hoef (2002) compared the kriging predictor to the sample 

mean in repeated simple random samples drawn from an artificial population. He found that the kriging pre-

dictor is more efficient than the sample mean, and gives valid confidence intervals. 

We now give a technical sketch of the kriging predictor of the population mean (better known as block 

kriging).  First of all, we need to model the spatial autocorrelation of data. A common model is to assume 

that, under the model, µξ =)]([E xy  and that the autocovariance between )( iy x  
and )( jy x  

is a function 

)(hC
 
which depends only on the distance h separating )( iy x  

and )( jy x  (second-order stationarity). The 

autocovariance is generally expressed in a parametric form by means of parsimonious models, under the as-

sumption of isotropy. An important class of isotropic covariance functions is the Matérn family, which in-

volves a three parameter vector ),,,( 2 vρσ=θ where 2σ  is the variance, ρ  is the range parameter (it con-

trols how fast  correlation  decay with increasing distance) and v  is the smoothing parameter (it controls the 

smoothness of the resulting interpolating surface). The autocovariance is rarely known, so it needs to be es-
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timated from the sample data. 

The block kriging is the best linear unbiased predictor of the population mean and is given by (see 

Cicchitelli and Montanari, 1997, Ver Hoef, 2002)  

 ),ˆ(ˆˆ 1 µY sssskr 1yVc −′+= −µ      (4)

where ;]1,,1,1[ ′= K1  ssssss yV11V1 111 )(ˆ −−− ′′=µ
 
is the weighted least squares estimator of ;µ sc is the n-

dimensional vector whose generic entry, ,ic  is given by 
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sV  
is the nn ×  dimensional matrix whose entries are the covariances between sample locations. 

The prediction variance is given by 
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4. Simulation study 

Now we present the results of a simulation study aimed at comparing our estimator, given by equation 

(3), to the kriging predictor, expressed by equation (4). We considered the artificial population expressed by 

the following function (see Figure 1) 

.10,10,5)]([cos5)]([sin5),( 211
2

2
2

121 <<<<++= xxxxxxxf  

 

 
Figure 1: population surface )(xy  

  

 

One thousand simple random samples were selected from the above population for sample sizes 100 

and 250. We considered also the sample size ,500=n  but, to reduce the bulk of computation time, the num-
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ber of replications was reduced to 500. For each of two estimators (for sake of brevity we put splYY
ˆˆ

1 =  and 

),
ˆˆ

2 krYY =  we obtained the Monte Carlo estimates of the following quantities: 

- Relative bias to the mean ;2,1,/])
ˆ

(E[ =−= iYYYR iMC  

- Relative efficiency (with respect to the sample mean, y )
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- Variance to mean squared error ratio ;2,1,
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- Confidence interval coverage (percentage) for a 95% nominal level.  

The knots appearing in model (1) were selected using the software due to Nychka et al. (1998). The 

penalty factor for splY
ˆ

 
has been chosen to achieve a predetermined number of degrees of freedom for the 

spline regressione model. The kriging predictor was computed assuming as autocovariance function the fol-

lowing isotropic exponential model 
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whose parameters were estimated by means of the restricted maximum likelihood.  

The main results of our simulation study are presented in Table 1 for different conbination of the num-

ber of knots, K, and the number of degrees of freedom, r. 

 

 

Table 1. Monte Carlo estimate of the: (i) Relative bias, (ii) Relative efficiency; (iii) Variance to mean 

squared error ratio, (iv) Confidence interval coverage rate  

 
splY

ˆ
 krY

ˆ
 

r K R  MCEff  msevar/R  coverage 

% 
R  MCEff  msevar/R  coverage 

% 

     100=n      

3 100 -0.0005 0.629 0.97 93.6 

9 100 -0.0004 0.290 0.88 89.4 

20 100 -0.0003 0.088 0.64 87.6 

-0.00021 0.042 1.74 98.5 

     250=n      

35 200 0.0002 0.025 0.64 89.1 

65 200 0.0002 0.006 0.32 73.8 

90 200 0.0002 0.003 0.18 60.0 

0.00005 0.007    3.28 99.9 

     500=n      

35 200 0,0003 0.021 0.76 90.4 

65 200 0,0002 0.004 0.50 85.4 

90 200 0,0002 0.002 0.33 79.0 

0.00002 0.002 5.00 100.0 
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The two estimators behave as approximately unbiased and are far more efficient than the sample mean. 

The efficiency of our estimator is close to or greater than that of the kriging when the number of degrees of 

freedom of the spline regression model is high. Both estimators suffer from unsatisfactory confidence inter-

val coverage rates. For our estimator there is a general under-coverage due to under-estimation of the sam-

pling variance, which becomes more and more serious as the number of degrees of freedom increases. In 

fact, when r is high the spline regression model tends to overfit the sample data and, as a result, to yield 

sample residuals smaller than those for non-sampled units. On the contrary, kriging confidence intervals suf-

fer from over-coverage: the kriging variance overestimates the design-based true variance of the estimator.  

Further research is needed, on one side, to find alternative variance estimators for our estimator which 

include the variance component due to the estimated regression coefficient, which is particularly important 

when the degrees of freedom are high with respect to the sample size; on the other side, to explore more in 

depth the characteristics of the kriging predictor in the design-based context.      
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